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Abstract

Martins, Julia Soihet; Assuncao, Juliano (Advisor). Essays in
Climate and Development Economics. Rio de Janeiro, 2024.
82p. Tese de doutorado — Departamento de Economia, Pontificia
Universidade Catolica do Rio de Janeiro.

In the Brazilian empirical context, this thesis investigates the impact
of extreme weather events on three key dimensions of development: he-
alth, gender-based violence, and education, focusing on how climate change
exacerbates existing inequalities by disproportionately affecting vulnerable
populations. The first chapter examines the relationship between heat and
mortality, showing that while heat-related mortality among non-elderly in-
dividuals is primarily caused by cardio-respiratory diseases, for the elderly,
the risk of death extends across a wider range of health conditions. Addi-
tionally, the findings indicate that heat-related deaths occur within a short
time span, highlighting the need for rapid healthcare responses during heat
waves. The second chapter explores the effects of drought on intimate part-
ner violence (IPV), comparing rural and urban areas. The results reveal
that long-term droughts significantly increase IPV rates in rural municipa-
lities, where economic losses resulting from water scarcity are substantial. In
contrast, prolonged droughts in urban areas have minor economic impacts
and do not affect IPV rates. The third chapter investigates the short-term
impact of extreme rainfall on student achievement in Southern Brazil. The
findings show that short, intense rainfall episodes reduce student test scores
on a national standardized exams, with disadvantaged groups—such as non-
white students, those from lower socioeconomic backgrounds, and students

with previous poor achievement—being the most affected.
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Resumo

Martins, Julia Soihet; Assunc¢ao, Juliano. Ensaios em Economia
do Clima e Desenvolvimento. Rio de Janeiro, 2024. 82p. Tese de
Doutorado — Departamento de Economia, Pontificia Universidade
Catolica do Rio de Janeiro.

No contexto emirico do Brasil, esta tese investiga o impacto de even-
tos climaticos extremos em trés aspectos chave do desenvolvimento: satude,
violéncia de género e educacao, focando em como as mudancas climéticas
agravam as desigualdades existentes ao afetar desproporcionalmente popu-
lagbes mais vulneraveis. No primeiro capitulo, examina-se a relagao entre
calor e mortalidade. A andlise revela que, enquanto as mortes relacionadas
ao calor entre os nao idosos sao causadas, sobretudo, por doencas cardi-
orrespiratérias, o risco de morte entre os idosos aumenta para um grupo
mais amplo de doencas. Além disso, os resultados indicam que as mortes
induzidas pelo calor extremo ocorrem em um intervalo curto de tempo, evi-
denciando a necessidade de respostas rapidas por parte do sistema de satde
durante ondas de calor. O segundo capitulo explora os efeitos de secas sobre
a violéncia doméstica, comparando areas urbanas e rurais. Os resultados
mostram que as secas de long prazo aumentam significativamente as taxas
de violéncia doméstica em municipios rurais, onde as perdas econOmicas
provenientes da escassez de adgua sao mais expressivas. Em contraste, em
municipios urbanos, onde as secas tém impactos econdmicos menores, secas
prolongadas nao estao associadas a um aumento da violéncia doméstica.
O terceiro capitulo investiga os impactos de curto prazo de chuvas inten-
sas no performance escolar no Sul do Brasil. Os resultados sugerem que
episodios curtos de chuvas intensas reduzem as notas dos alunos em uma
exame nacional padronizado, com os grupos mais vulneraveis—estudantes
nao-brancos, de origem socioeconémica mais baixa e com pior desempenho

escolar prévio—sendo os mais afetados.

Palavras-Chave

Desigualdade  Meio Ambiente e Desenvolvimento ~ Mudancgas Clima-

ticas  Saude e Desigualdade  Educacao e Desigualdade
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1
Introduction

Climate change is increasing the frequency and intensity of extreme we-
ather events, such as extremely high temperature days, intense rainfall episo-
des, and droughts (IPCC, 2021b). This scenario is expected to worsen with
further global warming. Extreme events are no longer isolated incidents, but
are becoming recurring occurrences that will increasingly shape development
outcomes. While the impacts of climate change are widespread, they are not
equally distributed. Vulnerable populations—both across and within coun-
tries—face the most severe consequences due to their limited capacity to cope
and adapt.

This thesis combines individual-level data with high-resolution weather
data to explore how extreme weather events affect three key dimensions of
development: health, gender-based violence, and education. Brazil, with its
vast geographical and climatic diversity, as well as significant socio-economic
inequalities, offers a unique setting for studying the impacts of extreme weather
on development. In this empirical context, we use panel-data techniques to
assess the causal impact of extreme weather on development outcomes. As
highlighted by Dell et al. (2014), focusing on changes in weather realizations
over time within a given spatial area helps to credibly identify (i) the channels
linking weather and the economy, (ii) heterogeneous treatment effects across
different areas, and (iii) nonlinear effects of weather.

The first chapter examines the relationship between heat and mortality,
which has been extensively documented in high-income countries but less ex-
plored in developing countries like Brazil. Using mortality data disaggregated
by cause of death and age, we confirm previous findings that heat-induced
mortality is significantly higher among the elderly compared to the overall po-
pulation. Our contribution to the literature lies in revealing an additional layer
of vulnerability: while heat-related mortality among non-elderly individuals is
primarily linked to cardio-respiratory diseases, for the elderly, it is associated
with increased mortality across a broader range of health conditions. Moreo-
ver, we find that heat-related deaths occur within a short time span, suggesting
that heat increases mortality by directly impacting health, rather than through

indirect economic channels, which have been shown to be important in other
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developing countries. These findings highlight the need for the health system
to be prepared to respond quickly to heat waves.

The second chapter explores the effects of drought on intimate partner
violence (IPV), comparing rural and urban municipalities. Using IPV compul-
sory notification data from official health sources, our estimation shows that
droughts significantly increase IPV rates in rural municipalities, particularly
as droughts become more severe and prolonged. In rural areas, substantial
declines in both agricultural production and local economic activity are also
observed. In contrast, prolonged droughts show no effects on IPV or agri-
cultural production in urban municipalities and have only minor impacts on
the local economy. Based on theoretical models, we argue that in rural areas,
income loss leads to heightened stress, exacerbates household tensions, and
reduces women’s bargain power within the household, ultimately contributing
to an increase in [PV prevalence. In urban municipalities, where income sour-
ces are more diversified, the economic consequences of droughts are less severe,
resulting in a weaker association between droughts and IPV. This chapter con-
tributes to the literature by being one of the first to explore the role of drought
duration in IPV dynamics and to emphasize the differing effects between rural
and urban areas.

The third chapter investigates the impact of short-term, high-intensity
rainfall episodes on student achievement in Southern Brazil. We observe a
decline in students performance on a national standardized exam, with the
effects increasing as the intensity and frequency precipitation rise. These
effects are more pronounced among non-white students, those from lower
socioeconomic backgrounds, and students with lower prior achievement. In
this sense, they contribute to aggravate educations inequities. We contribute
to the literature on the impacts of natural disasters on educational outcomes
by examining the direct impact of rainfall—an event that typically causes less
damage than major disasters (such as hurricanes, earthquakes, and widespread
flooding) but occurs more frequently. Our empirical approach also contrasts
with previous studies that generally define extreme shocks as deviations in
accumulated precipitation over longer periods (e.g., months or years) from
long-term averages.

Together, these chapters offer important insights into how climate change
exacerbates existing inequalities in several dimensions of development. In terms
of public policy implications, they underscore the need for mitigation strategies

with a special focus on these groups.



2
Heat and Mortality: Evidence from a Tropical Developing
Country

2.1
Introduction

Emissions of greenhouse gases from human activities have contributed
to approximately 1.1°C of warming since 1850, with projections indicating a
further increase of 1.5°C over the next 20 years (IPCC, 2021a). One of the most
severe consequences of global warming is the threat it poses to human health. In
high-income countries, there is robust evidence linking extreme heat to excess
mortality, increased emergency room visits, and higher hospital admissions
(e.g., Deschénes & Greenstone (2011); Masiero et al. (2022); Gould et al.
(2024)). Although evidence from developing countries is growing, it remains
more limited. Nevertheless, the effects are likely to be even greater due to
warmer climates, weaker healthcare systems, and reduced adaptive capacities
(Burgess et al., 2017; Cohen & Dechezleprétre, 2022).

In this study, we examine the relationship between heat exposure and
mortality in Brazil, a tropical developing country. While existing evidence
points to a positive association between high temperatures and mortality in
the country, it primarily comes from epidemiological studies focused on one
or a few municipalities (e.g., Fatima et al. (2020); de Moraes et al. (2022);
Silveira et al. (2023a,b)). Our research expands on these findings by providing
national-level evidence.

Our analysis leverages a large mortality dataset comprising 11,903,803
official death records from 5,555 Brazilian municipalities, covering the years
2010 to 2019—a period marked by an upward trend in extreme temperatures.
This dataset includes detailed information about the deceased, such as age,
municipality of residence, date, and cause of death. By merging death records
with municipal population data, we construct a panel of mortality rates
disaggregated by age groups and causes of death. This panel is then combined
with monthly indicators of temperature extremes derived from daily gridded
weather data.

Our primary focus is on absolute indicators of temperature extremes—the
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number of days in a month with temperatures exceeding a certain threshold.
But we also consider relative indicators, defined as the number of days with
maximum temperature surpassing the 95" percentile of the municipality-
specific historical distribution of daily maximum temperatures. This method
accounts for the possibility of adaptation, as evidence from developed countries
suggests that heat-related mortality tends to be lower in areas with consistently
higher temperatures. (Deschénes & Greenstone, 2011; Barreca et al., 2015).

The estimation of heat effects on mortality relies on a municipality-by-
month panel of mortality rates and temperature extreme indicators. The use
of monthly data at the local level allows for the inclusion of a large set of
fixed effects: year-month, municipality-year, and municipality-month. These
fixed effects control for various confounding factors related to both mortality
and temperature. By including these fixed effects, we mitigate concerns of
omitted variable bias and ensure that the identification of the heat effects
relies on within-municipality temporal variations in temperature extremes.
This setup provides a robust framework for isolating the causal impact of
heat on mortality.

Our findings indicate that heat is strongly associated with higher mor-
tality rates. In our benchmark specification, each day in a month with tem-
peratures above 35° C increases the mortality rate by 0.19 deaths per 100,000
inhabitants, equivalent to 0.42% of the monthly average rate. For the elderly
(adults aged 65 years and older), the coefficient is ten times larger, indicating
1.9 additional deaths per 100,000 inhabitants per month.

Our study builds on the existing literature examining the health risks of
global warming. Consistent with previous research, our findings confirm that
the elderly individuals are especially vulnerable to extreme heat (Benmarhnia
et al., 2015; Heal & Park, 2016; Yu et al., 2019). We provide additional evidence
by showing that extreme temperatures not only have a greater impact on the
elderly, but also affect them by a wider range of diseases. For non-elderly
individuals, extreme heat is primarily associated with an increased mortality
due to circulatory and respiratory diseases, whereas for the elderly, the risk
extends across most causes of death. In particular, temperatures exceeding
40°C increase mortality across all disease groups. Additionally, by including
lagged values of temperature extremes indicators, we find no evidence of
delayed or persistent impacts. This suggests that heat-related mortality is
primarily driven by immediate deterioration in health conditions rather than
by indirect channels such as income losses. Furthermore, we show that heat is
not simply anticipating the deaths of ill individuals that would have occurred

shortly afterward, as the contemporary effect of heat is stronger than the lagged
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effects.

Our paper also has important implications for public policy in Brazil. Not
only are extreme temperatures are becoming more frequent, but the population
is aging. Between 2010 and 2022, the number of people 65 years and older
increased by 57.4% (IBGE, 2002). Even if heat-related deaths represent only
a small fraction of total deaths, they could impose significant costs on the
public health system. Data from the Health Ministry indicate that the average
cost of hospitalization for circulatory disease, the leading cause of heat-related
deaths, is R$1,280.00 (approximately 220 US dollars). Our findings underscore
the need for effective heat health action plans and mitigation policies that
consider the vulnerabilities of the population. Moreover, because heat-related
deaths are likely to occur within a short period of time, rapid interventions
during emergency situations, such as heat waves, are crucial.

The rest of the paper is structured as follows: Section 2.2 reviews the
literature on the relationship between heat, mortality, and mitigation policies.
Section 2.3 describes the sources of mortality and weather data and presents
descriptive statistics. Section 2.4 outlines the empirical strategy. Section 2.5
presents and discusses the main results, including heterogeneous analyses by

age and cause of death. Finally, Section 2.6 concludes.

2.2
Literature Review: Heat, Mortality and Adaption

The most direct mechanism linking extreme temperatures to mortality
is the deterioration of health. Heat exposure disrupts the body’s ability to
regulate internal temperature, triggering biological responses that increase the
risk of cardiovascular, respiratory, cerebrovascular diseases (Mora et al., 2017;
Ebi et al., 2021). The elderly and individuals with preexisting health conditions
are particularly vulnerable, as these risks often compound (Heal & Park, 2016;
Deschénes & Moretti, 2009).

The impact of high temperatures on mortality varies significantly de-
pending on the season and location, with local average temperatures and the
timing of heat events playing crucial roles. For instance, Barreca et al. (2015)
finds that mortality rates are lower in U.S. states with more frequent extreme
heat episodes. This could result from adaptation strategies such as the use of
air conditioning, as well increased body’s tolerance to heat (Deschenes, 2014).
Consequently, many studies define heat extremes using relative measures, such
as the top 1% of hottest days in a specific location.

However, adaptation has its limits. Prolonged exposure to wet-bulb tem-

peratures exceeding 35°C overwhelms the body’s ability to cool itself, leading
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to hyperthermia and severe health risks, even for well-adapted populations
(Sherwood & Huber, 2010).>! Additionally, people in socioeconomic disadvan-
tage often have limited access to adaptation technologies like air conditioning,
making them more susceptible to heat dangers. Therefore, while relative me-
asures can be valuable in understanding adaptation, absolute thresholds are
essential for addressing universal heat risks.

Beyond these direct health effects, heat can also affect mortality through
indirect channels. Higher temperatures reduce agricultural output, water avai-
lability, and household income, particularly in poorer regions. Dell et al. (2012)
shows that high temperatures significantly constrain economic growth in poor
countries where the economy relies heavily on agriculture. In turn, reduced
economic activity and lower agricultural production can lead to poorer health
outcomes by depressing healthcare spending and contributing to malnutrition,
ultimately raising mortality rates (Mahendran et al., 2021). Similarly, Burgess
et al. (2017) find that in rural India, hot days during the growing season reduce
agricultural productivity and wages, indirectly increasing mortality by limiting
income and access to resources.

Technologies can help mitigate the effects of extreme heat. Barreca et al.
(2016) estimates that nearly 90% of the reduction in heat-related mortality in
the U.S. from 1960 to 2004 can be attributed to the widespread use of air con-
ditioning. In urban areas, green spaces also provide natural cooling. A recent
study by ITungman et al. (2023) suggests that increasing tree cover in Euro-
pean cities by up to 30% could prevent one-third of premature deaths caused
by urban heat islands during the summer. Additionally, improving access to
healthcare and increasing public spending on heat mitigation strategies could
reduce vulnerabilities to heat-related mortality (Cohen & Dechezleprétre, 2022;
Masiero et al., 2022; Nguyen et al., 2023).

This review underscores the importance of understanding how the impact
of heat differs among population groups, such as the elderly. It also highlights
the need to consider both relative and absolute measures of temperature
extremes, especially in regions with limited adaptive capacity. Moreover,
identifying the direct and indirect mechanisms through which heat affects
mortality is essential for designing effective mitigation policies. This study
addresses several of these aspects, providing a comprehensive perspective on
the impact of heat in Brazil. Although adaptation strategies are beyond the

scope of our analysis, they remain a topic for future research.

21Wet-bulb temperature combines heat and humidity, representing the point at which the
human body can no longer cool itself through sweating.
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2.3
Data

To understand the impacts of high temperatures on health, we construct
a panel of municipalities with monthly observations on temperature and
mortality rates for the period 2010 to 2019, covering 5,555 municipalities.

We rely on mortality microdata from the Brazilian National System of
Mortality Records (Sistema de Informagoes de Mortalidade - SIM/DATASUS),
managed by the Brazilian Ministry of Health. The microdata provide detailed
information on each officially registered death in Brazil, including the date and
basic cause of death, the deceased’s municipality of residence, and age. The
basic cause of death follows the criteria set by the International Classification
of Diseases, 10" Revision (ICD-10). We group basic causes of death into
six categories based on ICD chapters: i) circulatory diseases, ii) respiratory
diseases, iii) metabolic, nutritional, and endocrine disorders, iv) neoplasms
(tumors), v) infectious and parasitic diseases, and vi) all other non-external
causes. We exclude deaths from external causes from our sample. We aggregate
death records by municipality of residence and month and year of death,
and calculate monthly mortality rates (total deaths per 100,000 residents) for
different age groups and causes of death.

Data on daily maximum temperature come from Brazilian Daily Weather
Gridded Dataset (BR-DWGD) developed by Xavier et al. (2022). The current
version provides daily weather data at a spatial resolution of 0.1 x 0.1
degrees. This dataset results from interpolating observational records from
Brazilian weather stations. For each Brazilian municipality, we compute the
daily maximum temperature as the average of grid-cell values that fall within
the municipality’s boundaries. We then calculate the number of days in each
month with temperature exceeding 35, 37, and 40 degrees Celsius. Additionally,
we compute the number of days in a month with temperatures above the
95" percentile of the municipality-specific distribution of daily maximum
temperatures, using the period of 2001-2019 as a reference. From the same
weather dataset, we also obtain the monthly averages of daily precipitation
and relative humidity for each municipality. Additional data sources include
the population base, divided by gender and age group, from the Brazilian
Ministry of Health.

Figures 2.1 and 2.2 illustrate the evolution of population exposed to
extreme temperatures in Brazil between 2001 and 2019. Figure 2.1 displays
population-weighted number of days in a year with temperatures above 35°C
and 37°C, showing an upward trend starting from 2010. Figure 2.2 presents

the share of the municipalities experiencing three or more days in a year with
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temperatures exceeding 35°C, 37°C, and 40°C, weighted by municipality po-
pulation. We observe that while the percentage of the population experiencing
temperatures surpassing 40°C remains small throughout the period, it shows

a noticeable upward trend.

Figura 2.1: Average Number of Days in a Year with Temperatures Above 35°C
and 37°C
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Notes: This figure shows the evolution of the average number of
days in a year with temperature above 35 ° and 37° between 2001
and 2019. The source of temperature data is Xavier et al. (2022).
Municipality averages have been weighted by total population in
a municipality.
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Figura 2.2: Share of Municipalities with 3 or more Days in a Year with
Temperatures Above 35° and 37°C and 40°C
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Notes: This figure shows the evolution of the average number of days
in a year with temperature above 35 ° and 37° between 2001 and 2019.
The source of temperature data is Xavier et al. (2022). Observations are
weighted by municipality population of the relevant group between 2010
and 2019.

Table 2.1 presents the descriptive statistics of the municipality-by-month
panel of mortality rates and weather indicators between 2010 and 2019. The
summary statistics are reported separately for the entire population, as well as
for the elderly and non-elderly. As expected, mortality rates are higher among
the elderly for all conditions. Circulatory diseases emerge as the leading cause
of death, followed by neoplasms and respiratory diseases. On average, there
are 1.73 days per month with maximum temperatures above 35°C, 0.41 days
with temperatures above 37°C, and 0.008 days exceeding 40°C. The standard
deviations for the temperature indicators are large, indicating considerable

variation across municipalities and over time.
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Tabela 2.1: Descriptive Statistics

All Non-Elderly Elderly
(<65y)  (265y)
mean sd  mean sd mean sd
Mortality Rate (per 100,000 pop)
Digestive 2.60 2.77 1.39 2.07 1596 21.89
Infectious 217 245 131 1.82  11.55 19.36
Neoplasm 8.47 5.56 4.02 3.55 5731 42.63
Metabolic 3.14 342 1.04 1.86  26.19 32.38
Others 8.38 6.08 4.16 3.89 5444  48.78
Circulatory 14.2 791 4.61 3.90 120.25 69.16
Respiratory 586 4.79 1.50 212 53.72 4415
All Causes 44.8 165 18.0 8.18 339.43 117.75
Weather
# T35 1.73 484 1.73 4.85 1.70 4.73
# T37 0.41 216 041 2.17 0.40 2.09
# T40 0.0079 0.15 0.0079 0.16  0.01 0.15
# Tp95 1.86 3.70 1.86 3.70 1.85 3.63
Heat Wave 024 0.43 0.24 0.43 0.25 0.43
Precipitation 3.95 341 395 3.42 3.86 3.31
Relative Humidity 73.8 887 738 8.88 T73.53 872
Observations 666600 666600 666600

Notes: This table presents descriptive statistics for mortality and weather conditions data in
Brazilian municipalities from 2010 to 2019. Mortality data comes from SIM/DATASUS, and
weather information is Xavier et al. (2022) gridded weather dataset. Descriptive statistics
are shown for the entire population, as well as for non-elderly (<65 years) and elderly (65
years) populations, as defined by the Brazilian Health Ministry. # T35, # T37, and # T40
are the number of days in a month with maximum temperatures above 35°C, 37°C, and 40
°C, respectively. # Tp95 is the number of days in a month where temperatures exceed the
95 percentile of the daily maximum temperature distribution. Heat waves are defined as
two or more consecutive days in a month with temperatures exceeding the 95" percentile.
Observations are weighted by the municipality’s average population of the group of interest
over the 2010-2019 period.

2.4
Empirical Strategy
To identify the impacts of heat on mortality rates, we estimate the

following linear regression:

Mime = @+ B1Time + BoWine + Ot + Vit + Oimn + €ime (2.1)

Where: The dependent variable, M;,,, represents the mortality rate in
municipality ¢, during month m and year t. The variable of interest, Tj,.,
denotes the number of days in a month with temperatures above a specified
threshold (we use 35, 37, and 40 degree Celsius). The vector W, includes daily
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average precipitation and relative humidity. J,,; and ;; are vectors of year-
month and municipality-year fixed effects, respectively, while 6,,, represents
municipality-month fixed effects. €;,,; is the error term. We cluster the standard
errors at the municipality level. Moreover, since municipalities differ in size
and, therefore, in the number of people exposed to extreme temperatures, we
weight the regressions by the average population in each municipality.

The year-month fixed effects account for time-specific shocks affec-
ting all municipalities, such as macroeconomic conditions, national weather
phenomena, aggregate mortality trends, and national health policies. The
municipality-year fixed effects capture factors specific to each municipality
that remain constant within a given year, such as local governance, demo-
graphic composition, and health infrastructure. The municipality-month fixed
effects absorb local seasonality and ensure that variations in mortality arise
from temperature deviations from typical weather conditions rather than ex-
pected seasonal fluctuations. Additionally, we include controls for precipitation
and relative humidity, as these weather variables are often correlated and can
influence mortality.

The coefficient of interest, (31, captures the effect of each additional
day in a month with maximum temperature above a specific limit on the
mortality rate. Under the assumption that, conditional on fixed effects and
weather controls, temperature is uncorrelated with any other determinants
of mortality, (5, estimates the causal effect of heat on mortality. The sample
includes observations from 5,555 municipalities over ten years, across twelve
months each year, resulting in the estimation of a large number of additional
parameters. These parameters account for various unobserved confounding
factors that could bias our estimation. Furthermore, we show that our main
results remain robust as we incrementally add fixed effects to the model,
suggesting that our findings are not driven by omitted variable bias.

Importantly, by using different temperature thresholds, this approach al-
lows us to explore the non-linear effects of heat, as the impact on mortality can
vary significantly with temperature intensity. Finally, as a robustness check, we
cluster the standard errors at a more aggregated level—the microregion (557
in total)—to account for spatial and temporal correlations across observations

within the same microregion.
2.5
Results

The results section is structured into four subsections. First, we present

the effects of contemporary temperatures extremes on mortality, focusing on
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days with temperatures above 35°C, 37°C, and 40°C. Then, we explore how
different age groups and causes of death are affected by high temperatures.
Next, we analyze the effect of temperature extremes based on the local climate
conditions, including heatwaves. Lastly, we investigate the dynamic effects of

temperature on mortality.

2.5.1
Main Results

Table 2.2 summarizes the results of the benchmark model. We estimate
regressions for the number of days in a month with temperatures above 35°C,
37°C, and 40°C as independent variables. Columns (1)-(5) compare the results
from different specifications of equation 2.1 for each temperature threshold. In
the first four columns, we cluster standard errors at the municipality level, and
in the last one, we cluster them at the microregion level. In column (1), we
control the regression for year-month and municipality fixed effects. In column
(2), we add municipality-year fixed effects, and in column (3), we incorporate
municipality-month fixed effects. Finally, column (4) reports the effects of the
full specification, which also controls for daily average precipitation and relative
humidity. Column (5) presents the exact same specification as column (4), but
clustering standard errors at the microregion-level.

The estimated coefficients are positive and significant across all columns
and for all temperature thresholds. In addition, the magnitude of the coeffici-
ents increases as the temperature threshold rises, indicating that more intense
heat leads to greater effects on mortality rates. Notably, the coefficients for T35
and T37 are substantially larger when the models account for municipality-
month fixed effects, suggesting that heat-related mortality increases signifi-
cantly when temperatures exceed what is typically expected for a particular
municipality in a given month.

In our preferred specification, displayed in column (4), we estimate that
each additional day with a temperature above 35°C increases mortality rates
by approximately 0.19 deaths per 100,000 people, or 0.42% of the average

monthly rate.
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Tabela 2.2: The Effect of Heat on Mortality Rate

Dependent Variable: Mortality Rate (per 100,000 people)
(1) (2) 3) (4) (5)

#7135 0.0467* 0.0416™* 0.1762*** 0.1906*** 0.1906***
(0.01) (0.01) (0.01) (0.01) (0.02)
R? Adj. 0.4830 0.4888 0.4987 0.4987 0.4987
#T137 0.1713**  0.1628"* 0.3164** 0.3166*** 0.3166***
(0.03) (0.03) (0.02) (0.02) (0.03)
R? Adj. 0.4833 0.4891 0.4986 0.4987 0.4987
#T40 1.3728***  1.4559***  1.4268"* 1.3882*** 1.3882***
(0.20) (0.20) (0.20) (0.20) (0.20)
R? Adj. 0.4831 0.4889 0.4983 0.4983 0.4983
Observations 666,600 666,600 666,600 666,600 666,600
Year-Month FE Y Y Y Y Y
Municipality FE Y Y Y Y Y
Municipality-Year FE N Y Y Y Y
Municipality-Month FE N N Y Y Y
Weather Controls N N N Y Y
Microregion Cluster N N N N Y

Notes: This table shows the effect of heat on mortality. The dependent variable is the mortality
rate per 100,000 people. The independent variables of interest are the number of days in a month
with maximum temperatures above 35°C, 37°C, and 40°C. Each column represents a different
specification of equation 2.1. We estimate separate regressions for each temperature threshold.
The weather controls are average daily and humidity values. Observations are weighted by the
municipality’s average population between 2010 to 2019. In columns (1)-(4) standard errors are
clustered at the municipality level, and in Column (5) at the microregion level. Significance levels:
%y < 0.01, ¥*p < 0.05, *p < 0.10.

Figure 2.3 illustrates the significant risks associated with days when
temperatures exceed 40°C. It presents the results of estimating the same model
specified in column (4) of Table 3.2, but categorizing the number of days in
a month with temperatures above 40°C into 1, 2, 3, and 4 or more days,
rather than treating it as a continuous variable. Although such extreme heat
is very rare—occurring on average approximately 0.008 days per month in
our sample—these events carry substantial risks. For example, a single day of
exposure to temperatures above 40°C increases the mortality rate by about 2
deaths per 100,000 inhabitants compared to months without such days, which
represents an increase of almost 5% above the monthly average. Experiencing
four or more of these days in a month can lead to an increase of nearly 16%

above the monthly average.
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Figura 2.3: The Effect of Days Above 40° C on Mortality Rate
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Note: This figure shows the estimation of the number of days
exceeding 40 ° C on the mortality rate per 100,000 people. The
results are based on the full specification of benchmark model,
which includes year-month, municipality-year, and municipality-
month fixed effects. The dots represent the point estimations,
and the lines the 95% confidence intervals. Observations are
weighted by the municipality’s average population between 2010
to 2019. Standard errors clustered at the municipality level.

2.5.2
Heterogeneous Effects of Heat by Age and Cause of Death

As previously discussed, heat-related risks vary by age. For this reason,
we estimate the benchmark models eparately for different age groups: 0-9
years, 10-29 years, 30-49 years, 50-64 years, and 65 years or older. The results,
presented in Table 2.3, show that older adults are the most vulnerable to heat.
For them, the coefficient for days with temperatures above 35°C is 1.9, which
is ten times larger than the coefficient estimated for the entire population
(0.19). During the 2010-2019 period, the average elderly population in Brazil
was approximately 17 million people. They were exposed, on average, to 20
days per year with temperatures surpassing 35°C. Based on these estimates,
we attribute approximately 6,300 deaths related to heat each year among the
elderly.
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Tabela 2.3: The Effect of Heat on Mortality by Age Group

Dependent Variable: Mortality Rate (per 100,000 people)
0-9 Years 10-29 Years 30-49 Years 50-64 Years 65+ Years

(1) (2) (3) (4) (5)
# T35 0.0176* 0.0015 0.0306*** 0.1223*** 1.9278***
(0.009) (0.004) (0.008) (0.03) (0.1)
R? Adj 0.0225 -0.0025 0.0414 0.0974 0.1874
# T37 0.0298* 0.0120* 0.0525*** 0.1798*** 3.2320%*
(0.02) (0.006) (0.02) (0.05) (0.2)
R? Adj 0.0225 -0.0025 0.0414 0.0973 0.1873
# T40 0.1578 0.0950** 0.4010*** 0.5995* 141742
(0.1) (0.05) (0.10) (0.3) (1.7)
R? Adj 0.0225 -0.0025 0.0414 0.0973 0.1866
Observations 666,600 666,600 666,600 666,600 666,600
Month-Year FE Y Y Y y Y
Municipality-Year FE Y Y Y Y Y
Municipality-Month FE Y Y Y Y Y
Weather Controls Y Y Y Y Y

Notes: This table show the effect of heat on mortality according to age. The dependent variables

are the mortality rate per 100,000 inhabitants by population age group. The independent
variables are number of days in a month with maximum temperatures above 35°C, 37°C,
and 40°C, respectively. We estimate separate regressions for each temperature threshold. The
weather controls are average daily precipitation and humidity. Observations are weighted by
the municipality’s average population for the relevant age group during the 2010-2019 period.
Standard errors are clustered at the municipality level. Significance levels: ***p < 0.01,
**p < 0.05, *p < 0.10.

To understand the different risks of death among the elderly, we examine
the effects of high temperatures for different causes of death for non-elderly
(<65 years) and elderly (> 65 years) individuals. We present the results in
Table 2.4, with each column corresponding to a different cause of death. The
regressions indicate that for both elderly and non-elderly people, circulatory
and respiratory diseases are the main causes of heat-related deaths. For the
elderly, however, heat is associated with a higher risk of death across a broader
range of causes. For instance, temperatures above 40°C increase mortality
across all causes. Although such temperatures are rare, between 2010 and 2019
they exhibited an upward trend, which may signal even greater risks in the

future.
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Tabela 2.4: Effect of Heat on Mortality Rates by Cause for Non-Elderly and
Elderly

Dependent Variable: Mortality Rate (per 100,000 people)

All Circulatory Respiratory Metabolic Neoplasm Infections Digestive — Others
Panel A: Non-Elderly (<65y)
1) 2 ®3) 4) (5) (6) () 8)
# T35 0.0313**  0.0116*** 0.0045*** 0.0026** -0.0005 0.0019 0.0009  0.0104***
(0.005) (0.003) (0.001) (0.001) (0.002) (0.001) (0.001) (0.002)
R? Adj 0.1917 0.1150 0.0471 0.0242 0.0944 0.0691 0.0122 0.0964
# T37 0.0524**  0.0161* 0.0106**  0.0069***  -0.0047 0.0026 -0.0010  0.0220***
(0.01) (0.004) (0.002) (0.002) (0.004) (0.003) (0.002) (0.004)
R? Adj 0.1917 0.1150 0.0471 0.0242 0.0944 0.0691 0.0122 0.0964
T40 0.2750**  0.1186*** 0.0615** 0.0335 0.0469 -0.0098 -0.0246 0.0489
(0.07) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03)
R? Adj 0.1917 0.1150 0.0471 0.0242 0.0944 0.0691 0.0122 0.0964
Panel B: Elderly (>65y)
©) (10) (1) (12) (13) ) @) (0
#7135 1.9278**  0.6911*** 0.3201**  0.2238"**  0.0584*  0.0481**  0.0374™  (.5488***
(0.1) (0.06) (0.03) (0.03) (0.03) (0.01) 0.02)  (0.04)
R? Adj 0.1866 0.1349 0.1358 0.1020 0.0796 0.0508 0.0046 0.2357
# T37 3.2320** 1.2888"* 0.5536**  0.3686"** 0.0811 0.1091**  0.0643**  0.7664**
(0.2) (0.10) (0.06) (0.04) (0.06) (0.02) 0.03)  (0.08)
R? Adj 0.1866 0.1349 0.1358 0.1020 0.0796 0.0508 0.0046 0.2357
T40 14.1742%  4.0437** 2.6292%** 1.5997*  1.6058***  0.9813***  (0.4833**  2.8311***
(1.7) (0.9) (0.6) (0.4) (0.5) (0.3) (0.2) (0.5)
R? Adj 0.1866 0.1349 0.1358 0.1020 0.0796 0.0508 0.0046 0.2357
Observations 666,600 666,600 666,600 666,600 666,600 666,600 666,600 666,600
Year-Month FE Y Y Y Y Y Y Y Y
Municipality-Year FE Y Y Y Y Y Y Y Y
Municipality-Month FE Y Y Y Y Y Y Y Y
Weather Controls Y Y Y Y Y Y Y Y

Notes: This table presents the effect of heat on mortality rate by cause for non-elderly (Panel A) and elderly (Panel B). The dependent
variables are the mortality rates per 100,000 people by causes for each population group. Independent variables of interest are the
number of days in a month with maximum temperatures above 35°, 37°C, and 40°, respectively. We estimate separate regressions
for each temperature threshold. The weather controls are average daily precipitation and humidity. Observations are weighted by the
municipality’s average population for the relevant population group. Standard errors are clustered at the municipality level. Significance
levels: ***p < 0.01, **p < 0.05, *p < 0.10.

2.5.3
Alternative Heat Indicators

As an alternative approach, we use temperature extreme measures that
account for the municipality-specific distribution of daily maximum tempe-
ratures. Specifically, we estimate the effects of days in a month that exceed
the 95" percentile of this distribution on mortality rates. We also define a
heatwave as a binary variable indicating the occurrence of two or more con-
secutive days in a month with temperatures above the 95* percentile. Table
2.5 summarizes the findings for the entire population (Panel A), non-elderly
(Panel B), and elderly (Panel C). We present the results for overall mortality

rates as well as for causes most sensitive to heat. Overall, the results show a
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pattern similar to those obtained using absolute temperature measures, with
greater effects observed among individuals aged 65 and older, particularly for
cardio-respiratory diseases.

In terms of magnitude, the coefficient of days with temperatures above
the 95" percentile on overall mortality for the entire population is slightly
smaller than that of days exceeding 35 degrees. Moreover, two days with
temperatures above the 95th percentile are associated with an increase of 0.31
in mortality per 10,000 people, while two or more consecutive days (heat wave)
result in an increase of 0.44. This suggests that consecutive days of extreme

heat may have more severe effects, although they are less frequent.
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Tabela 2.5: The Effect of Heat on Mortality: Alternative Heat Indicators

Dependent Variable: Mortality Rate
(per 100,000 people)
All  Circulatory Respiratory Metabolic

Panel A: All Sample

() 2) 3) (4)

# Tp95 0.1574*** 0.0517** 0.0248**  0.0174***

(0.01) (0.005) (0.003) (0.002)

R? adj. 0.5038 0.3085 0.2491 0.1454

Heat Wave 0.4373*** 0.1352%** 0.0646**  0.0441***

(0.07) (0.03) (0.02) (0.02)

R? adj. 0.5034 0.3083 0.2489 0.1453
Panel B: (<65 years)

() (6) (7) (®)

# Tp95 0.0260*** 0.0073*** 0.0022 0.0020*

(0.005) (0.002) (0.001) (0.001)

R? adj. 0.2000 0.1240 0.0568 0.0342

Heat Wave 0.0485 -0.0059 0.0082 0.0116

(0.03) (0.02) (0.010) (0.008)

R2 adj. 0.2000 0.1240 0.0568 0.0342
Panel C: (>65 years)

(9) (10) (11) (12)

# Tp95 1.6058*** 0.5420*** 0.2714**  0.1915™*

(0.1) (0.05) (0.03) (0.02)

R? adj. 0.1955 0.1436 0.1446 0.1111

Heat Wave 4.3896*** 1.6013*** 0.6220*  0.3955**

(0.7) (0.3) (0.2) (0.2)

R2 adj. 0.1948 0.1434 0.1444 0.1110

Observations 666,600 666,600 666,600 666,600

Year-Month FE Y Y Y Y

Municipality-Year FE Y Y Y Y

Municipality-Month FE Y Y Y Y

Weather Controls Y Y Y Y

Notes: This table shows the effect of relative heat measures on mortality for the entire po-
pulation (Panel A), non-elderly (Panel B), and elderly (Panel C). The dependent variable is
the mortality rate per 100,000 people. The independent variables of interest are the number
of days with maximum temperatures above the 95" percentile of the municipality-specific
distribution of daily maximum temperature and a heat wave indicator. The heat wave indi-
cator is a dummy variable equal to 1 when at least two consecutive days exceeding the 95"
percentile. The weather controls are average daily precipitation and humidity. Observations
are weighted by the municipality’s average population for the relevant population group
between 2010 and 2019.. Standard errors are clustered at the municipality level. Significance
levels: ***p < 0.01, **p < 0.05, *p < 0.10.



Capitulo 2. Heat and Mortality: Evidence from a Tropical Developing Counti39

254
Dynamic Effects of Heat on Mortality Rate

So far, we have assessed the contemporary effects of heat on monthly
mortality rates. However, there is concern that elevated temperatures in
the previous months could also influence mortality. A positive association
between high temperatures observed in prior months and current mortality
would suggest delayed or persistent effects of heat. Conversely, a negative
association could indicate the presence of a displacement phenomenon (also
known as harvest effects), which implies that extreme temperatures may simply
anticipate the deaths of individuals whose health is already compromised and
who would have died shortly afterward, even in the absence of the event
(Deschénes & Moretti, 2009).

To explore the dynamic relationship between temperature exposure
and mortality, we include 1-month and 2-month lagged values of extreme
temperature days in the benchmark model. Table 2.6 presents the results. The
positive association between lagged values of days above 35°C and 37°C and
mortality suggests the presence of harvest effects. However, the coefficients for
contemporary days of high temperature remain positive and larger than the
lagged ones, indicating that the increase in mortality due to heat is primarily
driven by the immediate impact of extreme temperatures, rather than solely by
anticipatory deaths. Furthermore, the results suggest that heat-related deaths
occur within a short time span, indicating that higher mortality is primarily

due to immediate health deterioration.
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Tabela 2.6: Dynamic Effect of Temperature on Mortality Rate

Dependent Variable: Mortality Rate
(per 100,000 people)

(1) (2) (3)
# T35 0.1913**
(0.01)
# T35 (t-1) -0.0604***
(0.008)
# T35 (t-2) 0.0081
(0.009)
# T37 0.3141**
(0.02)
# T37 (t-1) -0.0597**
(0.02)
# T37 (t-2) -0.0007
(0.01)
# T40 1.3937***
(0.2)
# T40 (t-1) 0.1237
(0.1)
# T40 (t-2) 0.2718*
(0.2)
Observations 655,490 655,490 655,490
R2%adj 0.5027 0.5026 0.5023
Month-Year FE Y Y Y
Municipality-Year FE Y Y Y
Municipality-Month FE Y Y Y
Weather Controls Y Y Y

Notes: This table studies the dynamic relationship between heat and mortality
by including lagged values of temperature independent variables. The dependent
variable is the mortality rate per 100,000 people. The independent variables of
interest are the number of days in a month with maximum temperatures above
35°C, 37°C, and 40°C, respectively. Standard errors are clustered at the municipality
level. Significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01.

2.6
Conclusion

In this paper, we examined the relationship between extreme temperatu-
res and mortality in Brazil. Our empirical approach leverages high-frequency

data, allowing us to control for a large list of fixed effects. This provides strong
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evidence that we are indeed capturing the causal impact of heat on mortality.

Our findings indicate a clear association between heat exposure and
mortality. Each additional day with temperatures above 35°C increases the
monthly mortality rate by 0.19 per 100,000 people, equivalent to 0.42% of
the monthly average rate. When disaggregating deaths by cause, we observe
that circulatory and respiratory diseases are the leading contributors to heat-
related fatalities. Consistent with previous research, our results show that
the elderly are significantly more vulnerable, with the estimated effect being
ten times larger for this group compared to the one estimated for entire
population. Based on these estimations, we project approximately 6,528 heat-
related deaths per year among older adults between 2010 and 2019. Moreover,
heat exposure is linked to a broader range of health conditions in the elderly
than in younger individuals.

Temperatures exceeding 40°C are particularly dangerous, although they
remain relatively rare. However, when examining temperature trends from 2001
to 2019, there is an upward trajectory, suggesting an increasing risk over time.

Our results are also robust when measuring heating through temperature
anomalies, ie, unusual deviations in temperature from the municipality long-
term temperature average. We also observe stronger short-term effects of heat
on mortality, suggesting a direct mechanism through which heat worsens health
conditions. This immediate impact of heat has important policy implications,
emphasizing the need for well-coordinated health plans that facilitate rapid
interventions during heat waves.

Our study provides valuable insights into the impact of heat in a tropical,
developing country where research is more limited compared to developed
nations. As the population ages and global warming intensifies, heat-related
mortality is expected to rise, underscoring the urgent need for adaptation
strategies. Given that individual-level adaptation to extreme heat is less
common or often restricted to specific groups in countries with significant
inequalities like Brazil, it is essential for policymakers to develop affordable
adaptation measures. One potential solution could be the expansion of green
spaces in urban areas, which can help mitigate heat exposure. Future research
could further investigate the role of adaptation policies in Brazil to better

understand their effectiveness in mitigating these increasing risks.
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Daily Maximum Temperature Distribution

Figura A.1: Daily Maximum Temperature Distribution for Brazilian Munici-
palities
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Notes: This figure shows the distribution of daily maximum
temperatures across Brazilian municipalities between 2010 and
2019. Data is from Xavier et al. (2022).
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Droughts, Economic Distress, and Intimate Partner Violence:
Evidence from Brazil

3.1
Introduction

Droughts are among the most serious hazards to livestock and crops
globally, affecting approximately 55 million people annually (WHO, 2024).
While they pose significant threats to rural communities, their impacts vary
across different population groups. In particular, drought effects are unlikely to
be gender-neutral. Traditional gender roles, persistent labor market disparities,
and unequal access to resources and productive assets make women more
vulnerable to the adverse effects of droughts (Fruttero et al., 2023; Bryan
et al., 2024). Building on the literature that examines the unequal gender
impacts of droughts, this paper investigates the relationship between droughts
and intimate partner violence (IPV) in Brazil, exploring differences between
rural and non-rural municipalities.

The empirical analysis relies on a municipality-by-month panel dataset
that combines IPV records with drought indicators, covering the period from
2011 to 2019. The IPV data come from the Brazilian Health Ministry and in-
clude information on all mandatory notifications of interpersonal violence. To
construct the drought indicators, we calculate the Standardized Precipitation-
Evapotranspiration Index (SPEI) for each municipality at different time scales
using data from the Global SPEI Database. The SPEI is a widely accepted
index used to monitor drought conditions, capturing deviations in the water
balance (the difference between precipitation and evapotranspiration) from
long-term averages. Positive SPEI values indicate wet conditions, while nega-
tive values indicate drought conditions.

The empirical strategy is based on a two-way fixed effects model, which
explores within-municipality changes in IPV and drought conditions over time.
Identification relies on the assumption that, after controlling for municipality
and time fixed effects, droughts are exogenous events, allowing us to estimate
their causal impact on IPV.

Using data from the 2010 Brazilian Population Census, we categorize
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municipalities as rural and urban. Specifically, urban municipalities are defined
as those with less than 15% of the population residing in urban areas. We then
conduct the analysis separately for rural and urban municipalities.

Our estimations indicate that droughts increase IPV rates in rural
municipalities, with the effects intensifying with both the duration and severity
of droughts. We find no significant association between a 1-month drought
and IPV. Nevertheless, our estimates show that IPV rates are 2%, 3.6%, and
5.9% higher in municipalities exposed to 3-month, 6-month, and 12-month
drought episodes, respectively. When distinguishing between moderate and
severe drought episodes, we find that a moderate drought over the past 12
months is associated with a 4.3% increase in the IPV rate, while a severe
drought corresponds to a 7% increase. In contrast, in urban municipalities, we
find a positive association only between IPV and 1-month droughts, suggesting
that droughts may have immediate effects on IPV in urban areas, but these
impacts do not persist, unlike in rural areas.

To investigate our hypothesis that droughts increase IPV mainly through
an economic channel, we obtain data on agricultural production and GDP by
economic sector from IBGE. Since these data are only available at the annual
frequency, we average monthly SPEI values to construct an annual panel
linking weather, agriculture, and local economic activity. Our findings show
that in rural municipalities prolonged droughts reduce agricultural production
(in terms of planted area, harvested area, and production value) and negatively
impact overall economic activity. The largest negative impact is seen in the
agricultural sector, but the effects also spill over into the industrial sector.
In urban municipalities, the results show no impact on agriculture and much
smaller effects on economic activity. These findings suggest that the economic
channel is a key driver: when the economic impacts of droughts are limited,
[PV rates are less likely to be affected.

Our study contributes to the emerging literature on the gendered effects
of droughts. Previous research has shown that during droughts, women are less
likely to shift to non-farm income-generating activities, assume disproportio-
nately greater household responsibilities, and may experience worse outcomes
in terms of nutrition and health compared to men (Algur et al., 2021; Afridi
et al., 2022; Hirvonen et al., 2023). We add to this body of knowledge by
specifically examining the impact of droughts on gender-based violence.

Most studies on the effects of drought shocks on IPV have focused
on poorer countries in Africa, yielding mixed results—some find a positive
association, while others report no significant effects (Cooper et al., 2021).

Few studies have examined this relationship in Latin America. A notable
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exception is Diaz & Saldarriaga (2022), who documented a 65% increase in
physical IPV following droughts in the Peruvian Andes. Our study contributes
to this literature in several important ways. First, we provide evidence from
Brazil, a compelling case for study due to: (i) the persistence of IPV, with 30%
of Brazilian women reporting experiences of domestic violence despite legal
advancements to punish and prevent such violence; (ii) significant weather
variability, with several regions experiencing severe droughts during the 2010s;
and (iii) the central role of agriculture in the economy, accounting for nearly
a quarter of the GDP (BRASIL, 2024).

Second, we advance the understanding of the relationship between
droughts and IPV by empirically demonstrating that the impact of droughts
on IPV intensifies with both their severity and duration. To the best of our
knowledge, this is the first study to analyze how IPV responds to droughts
of different duration. Third, by comparing rural and urban municipalities, we
provide strong evidence that the economic channel is a key mechanism th-
rough which droughts influence IPV. Finally, we introduce a novel measure of
IPV. Most studies rely on surveys or mortality data to construct IPV indica-
tors. While mortality data capture only the most extreme case, survey-based
indicators often suffer from under-reporting, as women may fear retaliation
from their partners. Alternatively, we use compulsory IPV notifications from
healthcare units. Under Brazilian law, healthcare professionals are required to
report any suspected or confirmed cases of violence once a woman seeks care,
meaning that notifications do not depend on the victim’s willingness to report.
Yet, our measure may still have limitations, as it could primarily capture only
severe cases of IPV.

The rest of the paper is structured as follows. Section 3.2 provides a
theoretical discussion of the relationship between drought, economic factors,
and IPV. Section 3.3 describes the data sources, explains the construction of
drought and TPV indicators, and shows descriptive statistics. Section 3.4 ou-
tlines the empirical strategy and identification hypothesis. Section 3.5 reports
and discusses the main results and performs some robustness checks. Finally,

Section 3.6 concludes.

3.2
Theoretical Framework

In this section, we review theoretical contributions from economics,
sociology, and psychology that help establish a causal pathway between
droughts, economic shocks, and IPV, along with empirical applications of

theoretical models.
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From an economic perspective, droughts can be seen as a proxy for a ne-
gative income shock, particularly for rural households. Farmer & Tiefenthaler
(1997) develops a non-cooperative household bargaining model to explain the
effects of economic factors (e.g., employment, income) on IPV. In this model,
the relative bargaining power between the man (aggressor) and the woman
(victim) determines the level of violence. The model assumes that man’s sa-
tisfaction increases when he exercises violence (due to increased self-esteem,
better control of the family’s financial resources, etc.). The man maximizes
his satisfaction, constrained by the woman staying in the relationship. The
woman chooses to stay in an abusive relationship as long as her outside op-
tion (divorce) offers her less utility than staying. The utility from staying in
the relationship comes from a shared household income. Gains (losses) in the
woman’s income increase (decrease) the utility of her outside option and her
bargaining power, which means the level of violence she tolerates decreases (in-
creases), thus effectively reducing (increasing) the violence when she chooses
to stay in the relationship.

In the empirical literature, the bargaining model has been applied to
show how improvements in a woman’s income, the female/male wage ratio, or
other forms of external support that increase the relative bargaining power of
the woman can help prevent IPV. Aizer (2010) finds that more equal wages
between genders lead to fewer female hospital visits in California. In Brazil,
however, Bhalotra et al. (2021) demonstrate that both women’s and men’s
job loss are associated with increases in domestic violence, which cannot be
fully explained by bargaining models, as they predict opposite effects for male
and female unemployment. Furthermore, several studies document that cash
transfer programs can prevent IPV (Haushofer et al., 2019; Roy et al., 2019;
Diaz & Saldarriaga, 2022). There’s also evidence that asset ownership reduces
IPV. Panda & Agarwal (2005) show that both land and home ownership are
protective factors against IPV in India. Similarly, Oduro et al. (2015) estimate
that a greater share of a woman’s wealth in the couple’s total wealth reduces
the odds of emotional abuse in Ghana and lowers the risk of physical IPV in
Ecuador.

Family stress models also offer a useful framework for understanding how
economic hardship caused by water scarcity increases women'’s vulnerability to
IPV. These models assume that economic hardship triggers a chain of stressors
that put pressure on family relationships, reducing couple well-being and
marital quality (Conger et al., 1990; Voydanoff, 1990). For example, Kuhn et al.
(2009) show that large wealth losses lead to increased feelings of depression and

the use of antidepressant drugs. Browning & Heinesen (2012) demonstrate that
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job loss increases the risk of mortality, suicide, and suicide attempts, as well as
death and hospitalization due to traffic accidents, alcohol-related diseases, and
mental illness. This psychological distress, in turn, can deteriorate the quality
of relationships and increase the risk of conflict within couples (Fox et al.,
2002; Arenas-Arroyo et al., 2021).

Schneider et al. (2016) test the family stress model in the context of the
Great Recession in the United States. They estimate that rapid increases in
unemployment rates are associated with a rise in abusive behavior among men.
Their research indicates that the effects of the recession are not fully captured
by individual or household measures of job loss or material hardship. They
conclude that economic crises lead to feelings of fear and insecurity, which
likely contribute to abusive behavior.

These models illustrate how power imbalances within households, in-
creased control over scarce resources, and psychological distress triggered by

droughts create an enabling environment where [PV arises.

3.3
Data

In this section, we present the sources of data for IPV, weather, agricul-
ture, and economic activity. We describe how we create the IPV indicators and
drought measures. Next, we provide descriptive statistics for the sample and

conduct some preliminary descriptive analyses.

3.3.1
IPV

The source of IPV data is the Notifiable Diseases Information System
(Sistema de Informagio de Agravos de Notificagio, SINAN/DATASUS), ma-
naged by the Brazilian Ministry of Health. The SINAN is a system that reunites
all notifications of diseases and health conditions that are part of the national
list of compulsory notifications. The Brazilian Health Ministry is responsible
for elaborating, updating, and publishing this list. Since 2011, interpersonal
violence has been included in this list, obligating all healthcare units - public
and private - to report any confirmed or suspected case. The attending me-
dical personnel must fill out a form detailing victim’s characteristics (such as
age, race and material status), the relationship between the victim and the
aggressor, the type of violence (sexual, physical, psychological) and the date
and location of the aggression. We classify as I[PV those cases in which the

aggressor was the woman’s husband, ex-husband, boyfriend, or ex-boyfriend.
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Figura 3.1: IPV Rate Evolution
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Notes: This figure shows the evolution of IPV rate
between 2011 and 2019 in Brazilian rural and non-rural
municipalities. Data is from the SINAN/DATASUS.
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more severe cases of violence because not all IPV would lead the victim to seek
health services.

The IPV measure is the rate of IPV notifications by 100,000 women. The
annual female population is also from Brazilian Health Ministry. We assume
that the female population remains constant over the months of the same year.
We apply an inverse hyperbolic sine (i.h.s) transformation in the IPV rate to
attenuate the effects of outliers. But, we show that the main results are robust
to other IPV specifications.

Figure 3.1 illustrates the evolution of the rate of IPV notifications
between 2011 and 2019 for rural and urban municipalities. It indicates a
consistent upward trend in IPV rates in both rural and urban areas, with

urban areas consistently showing higher IPV rates over time.

3.3.2
Weather

We obtained monthly series of the Standard Precipitation-
Evapotranspiration Index (SPEI) from the Global SPEI database (SPEI-
base). SPEIbase provides information about drought conditions at the global
scale, with a spatial resolution of 0.5 degrees. The SPEI index is derived
from monthly precipitation and potential evapotranspiration records from the
Climatic Research Unit of the University of East Anglia and is available for
time scales ranging from 1 to 48 months. For the purposes of this study, we
collected SPEI series for the Brazilian territory at 1-month, 3-month, 6-month,

and 12-month time scales. We then calculate the SPEI for each municipality



Capitulo 3. Droughts, Economic Distress, and Intimate Partner Violence:
Evidence from Brazil 39

as the weighted average of values within the municipality’s boundaries.

The SPEI is an extension of the Standard Precipitation Index (SPI).
Unlike the SPI, which defines drought based only on precipitation deficits,
the SPEI also accounts for the effect of temperature in drought determina-
tion by incorporating evapotranspiration. Essentially, the SPEI represents the
number of standard deviations by which the precipitation-evapotranspiration
amount deviates from the long-term mean. Positive values indicate wet con-
ditions, while negative values represent drought conditions. The period of ac-
cumulation of the precipitation-evapotranspiration amount corresponds to the
SPEI time scale. Different time scales are useful for evaluating the duration
of droughts. Short-term droughts (1 month) can indicate reduced soil mois-
ture, while medium-term droughts (3-6 months) typically lead to crop failures
and agricultural losses. Long-term droughts (12 months) are associated with
reduced water availability in rivers, lakes, reservoirs, and groundwater. It is
important to estimate and compare the effects of drought across different time
scales, as they reflect different aspects of water scarcity, while recognizing that
a short-term drought index may actually capture the effects of an ongoing,
longer drought.

In this study, we classify drought episodes according to the criteria below:

1 if SPEI < —1
Drought =

0 otherwise

1 if —1<SPEI<—-1.5
Moderate Drought =

0 otherwise

1 if SPEI < —1.5
Severe Drought =

0 otherwise
Figure 3.2 illustrates the annual average SPEI-12 for Brazilian municipa-
lities in 2011, 2015, 2017, and 2019. In 2011, most regions exhibit wet conditions
(purple to blue areas), but by 2015, drought conditions (yellow to orange) have
spread. The drought intensifies in 2017, especially in the eastern portion of the
country. In 2019, there is some attenuation, although some parts continue to

experience moderate droughts, particularly in central and southeastern Brazil.
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Figura 3.2: Average SPEI-12

Notes: This figure illustrates the annual average SPEI-
12 for the years of 2011, 2013 ,2017 and 2019. Data
source is the Global SPEI database.

3.3.3
Other Data

We use additional data sources to gather information on municipal
characteristics. From the 2010 Brazilian Census, conducted by the Brazilian
Institute of Geography and Statistics (IBGE), we collect information on the
rural and urban populations of each municipality. Additionally, we use IBGE’s
data series on municipal output by economic sector, along with data on crop
production, including planted area, harvested area, and production value. For
robustness checks, we use gridded weather data from Xavier et al. (2022) as

an alternative source for constructing drought indices.

3.34
Sample Selection and Summary Statistics

We follow the criteria of Braga et al. (2016) to classify Brazilian mu-
nicipalities into three categories based on the share of the rural population:
predominantly urban (< 15%), intermediate rural (15%-50%), and predomi-
nantly rural (> 50%). Using the 2010 Brazilian territorial division, out of
5,565 municipalities, we successfully combine data on weather and IPV for

5,471 municipalities. Of these, 4,317 were classified as predominantly rural or
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intermediate rural, and 1,154 as urban. In this article, we refer to both interme-
diate rural and predominantly rural municipalities simply as rural. The data
are organized into a municipality-by-month balanced panel for the 2011-2019
period, during which all necessary data were available.

Table 3.1 presents the descriptive statistics for rural and urban munici-
palities. The summary statistics indicate that the average IPV rate is higher
in urban municipalities, with an average of 4.95 per 100,000 women, compared
to 3.98 per 100,000 women in rural municipalities. However, since IPV rates
are based on notifications, it may also reflect disparities in the availability of
healthcare services. The large standard deviations in IPV rates suggest signi-
ficant variation between municipalities and across time. Moreover, approxima-
tely 30% of rural municipalities and 26% of urban municipalities experienced
drought conditions during the 2011-2019 period. There are also notable diffe-
rences in economic indicators between rural and urban municipalities. In both
contexts, per capita values suggest that the service and industry sectors contri-
bute more to GDP than agriculture. However, agriculture remains significantly
more important in rural municipalities, where per capita agricultural output
is R$2520, nearly five times higher than the R$464.3 recorded in urban areas.
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Tabela 3.1: Descriptive Statistics

Rural Municipalities

Urban Municipalities

Mean (SD) Min Max  Mean (SD) Min Max
IPV Rate (per 100,000 women) 3.98 0 1105.0 4.95 0 1030.9
(12.70) (9.26)
Drought
SPEI (1-month) -0.28 -6.92 5.76 -0.16 -5.00 6.19
(1.12) (1.12)
SPEI (3-month) -0.34 -4.79 341 -0.20 -4.79 3.16
(1.09) (1.10)
SPEI (6-month) -0.39 -3.90 3.47 -0.26 -3.50 3.41
(1.07) (1.06)
SPEI (12-month) -0.47 -3.66 3.34 -0.34 -3.66 3.26
(1.07) (1.08)
Drought (1-month) 0.29 0 1 0.26 0 1
(0.46) (0.44)
Drought (3-month) 0.30 0 1 0.26 0 1
(0.46) (0.44)
Drought (6-month) 0.31 0 1 0.27 0 1
(0.46) (0.45)
Drought (12-month) 0.35 0 1 0.31 0 1
(0.48) (0.46)
Economic and Agriculture
Agriculture (R$) 2520 14.2  1,07,030 464.3 0 42,412
(4041) (1344)
Industry (R$) 3110 5.2 690,873 6222 74 250,325
(11384) (7808)
Services (R$) 4700 443 130,857 15804 1052 149,752
(4728) (9854)
Harvested Area (Ha) 15,853 0 702530 16965 0 1,205,669
(42535) (52648)
Planted Area (Ha) 16194 0 704911 17061 0 1,205,669
(42416) (52786)
Production Value per capita (R$) 2.7 0 234 0.64 0 85.0
(7.2) (2.4)
Observations 466236 124632

The data presents summary statistics of IPV, drought, and local economy for urban and rural municipalities in
Brazil. Standard deviations are reported in parentheses. The IPV rate is the number of IPV notifications per 100,000
women. We classify IPV as any aggression against women committed by a husband, ex-husband, boyfriend, or ex-
boyfriend. The IPV microdata come from the SINAN/DATASUS. Economic and agricultural data are from IBGE and

are available only at the annual frequency. All monetary values are in Brazilian Reais (R$), adjusted to 2010 prices.

The SPEI index are derived from the Global SPEI database.

42
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3.4
Empirical Strategy

The estimation of the impact of drought on IPV is based on a two-
way fixed effects model that includes both municipality and time fixed effects.
The source of variation used in the identification strategy comes from within-
municipality changes in [PV rates and drought conditions over time.

Formally, we estimate the following linear regression:

IPV;y = a+ fDrought,, + 0i + \; + €, (3.1)

The outcome variable of interest, I PV}, represents the inverse hyperbolic
sine (IHS) transformation of the IPV notification rate per 100,000 women in
municipality ¢ at time t. The term Drought;; measures drought conditions. 6;
denotes municipality fixed effects, A\; represents time fixed effects, and ¢;; is the
random error term. Standard errors are clustered at the municipality level.

The time fixed effects control for common factors across all municipa-
lities within a given month, year, or specific month-year combination. This
includes macroeconomic conditions, nationwide weather phenomena, national
gender policies, and seasonal factors that may influence IPV rates and drought
severity. Municipality fixed effects, in turn, control for time-invariant characte-
ristics that are unique to each municipality, such as cultural norms, long-term
climate patterns, and environmental conditions. The regression is weighted by
the average population of each municipality between 2011 and 2019, ensuring
that larger municipalities have greater influence on the coefficient estimates.
This weighted approach ensures that results are representative of the overall
population, and reduces the risk that rare IPV events in small municipalities
distort the analysis through disproportionately high IPV rates.

In equation 3.1, [ is the coefficient of interest. Our key identifying as-
sumption is that, conditional on municipality and time fixed effects, droughts
are uncorrelated with any other determinants of IPV. If this assumption holds,
[ estimates the causal effects of droughts on IPV. The methodology we use
to define drought conditions ensures that they reflect unusual dry conditions,
making these events less predictable and less likely to be systematically cor-
related with other determinants of IPV. This feature helps minimize concerns
about potential bias from omitted variables.

To examine the link between IPV and economic factors, we estimate the
impacts of droughts on agricultural production and economic activity using a
municipality-by-year panel, as economic and agricultural data are not available

at a monthly frequency. Formally, we estimate the model below:
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Yiy, = K + ¢Drought,, 4 07 + 11, + €y (3.2)

In equation 3.2, 7 indexes the municipality and y the year. Yj, represents

an outcome variable related to either agriculture or economic activity. The

term Drought,, is the annual measure of drought conditions, derived from
averaging monthly SPEI-12 values.

The terms d, and p, represent municipality fixed effects and year fixed

effects, respectively. Year fixed effects capture annual trends common to all

municipalities, but unlike the time fixed effects in equation 3.1, they do not

account for seasonal variations.

3.5
Results

In this section, we present the results of the impact of droughts on
IPV, agricultural production, and economic activity for rural and non-rural

municipalities. We also perform robustness checks to validate the results.

3.5.1
IPV

In Table 3.2, we present the results of estimating equation 3.1 for rural
(panel A) and urban (panel B) municipalities. Each column (1)-(4) and
(5)—(8) corresponds to regressions using drought indices over 1, 3, 6, and
12-month accumulation periods. All specifications include both municipality
and time fixed effects. We estimate the benchmark model using three drought
specifications as independent variables: (i) SPEI directly, (ii) a binary indicator
for drought occurrence, and (iii) binary indicators for moderate and severe
droughts. This approach enables us to evaluate two important aspects of
drought: duration and intensity.

In rural municipalities, the results show that short-term droughts (1
month) do not significantly affect IPV, whereas medium-term (3 and 6 months)
and long-term (12 months) droughts lead to an increase in IPV incidence.
Moreover, drought intensity also plays a significant role. In our preferred
specification, displayed in column (4), long-term droughts increase the IPV
rate by 5.8%. When distinguishing drought episodes by intensity, moderate
droughts are associated with a 4.3% higher IPV rate, while severe droughts
correspond to a 7.7% increase.

In urban municipalities, the estimations show only a weak association
between drought and IPV. Specifically, the pattern differs from rural munici-

palities, with a negative and significant coefficient only for 1-month droughts.
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This suggests that in urban areas, droughts have an immediate but transitory

impact on IPV.

Tabela 3.2: Impact of Droughts on IPV

Dep Var: IPV Rate (IHS transformation)
Panel A: Rural Municipalities

l-month 3-month  6-month  12-month

(1) (2) (3) (4)
SPEI -0.0052  -0.0065* -0.0137** -0.0247**
(0.003)  (0.003)  (0.005)  (0.007)
R2adj 0.0376  0.0376  0.0377  0.0378
Drought 0.0008  0.0209** 0.0355"**  0.0582**

(0.006)  (0.008)  (0.009)  (0.010)

R%adj 0.0376 0.0376 0.0377 0.0378
Moderate Drought  -0.0093  0.0241***  0.0258**  (0.0428"**
(0.008) (0.009) (0.009) (0.010)

Severe Drought 0.0113 0.0175*  0.0463**  0.0765"**

(0.008) (0.010) (0.010) (0.010)
R%adj 0.0376 0.0376 0.0377 0.0380
Observations 466,236 466,236 466,236 466,236

Panel B: Urban Municipalities
() (6) (7) (8)

SPEI -0.0106*  -0.0091 -0.0070 -0.0032

(0.005) (0.007) (0.010) (0.010)
R%adj 0.1612 0.1612 0.1611 0.1614
Drought 0.0288*  0.0085 0.0115 -0.0219

(0.010)  (0.020)  (0.020)  (0.020)

R2adj 0.1612 01612  0.1611  0.1614
Moderate Drought ~ 0.0203*  0.0316  0.0468  0.0032
(0.020)  (0.020)  (0.040)  (0.030)

Severe Drought ~ 0.0282"  -0.0168  -0.0334  -0.0518
(0.010)  (0.040)  (0.040)  (0.050)

R2%adj 0.1612 0.1612 0.1611 0.1614
Observations 124,632 124,632 124,632 124,632
Municipality FE Y Y Y Y
Time FE Y Y Y Y

Note: This table presents the results of the effects of droughts on IPV. The
dependent variable is THS transformation of the IPV notification rate per 100,000
women. Panel A reports the results for rural municipalities, and B for the
Urban’s. The SPEI (Standard Precipitation-Evapotranspiration Index) is used
as the measure of drought. Drought is defined as SPEI < -1, Moderate Drought’
as -1.5 < SPEI < -1, and Severe Drought as SPEI < -1.5. Standard errors are
clustered at the municipality level. Significance values: * p < 0.10, ** p < 0.05,
< 0.01
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3.5.2
Agriculture and Economic Outputs

To assess the agricultural and economic implications of drought, we
estimate the model described in equation 3.2, with results presented in Table
3.3. Panel A displays the results for rural municipalities, while Panel B covers
urban municipalities. All outcomes are expressed in the logarithmic scale, and
all specifications include municipality and year fixed effects. Columns (1)—(3)
and (7)—(9) report the impact of annual drought conditions. The agriculture
outcomes we examine are planted area, harvested area, and production value
of crops. In rural settings, we estimate significant declines in planted area,
harvested area, and production value, with effects ranging between 6% and
13%. In addition, severe droughts are associated with even greater losses. For
example, the coefficient for severe droughts on harvested area is more than
three times larger than that for moderate droughts, representing a 20% loss.
In urban settings, all coefficients are statistically insignificant, suggesting that
drought conditions do not significantly affect agricultural outcomes in these
areas.

Columns (4)—(6) and (11)—(12) of Table 3.3 focus on local economic
activity, categorized by sector: agriculture, industry, and services. In rural
municipalities, prolonged droughts reduce agricultural output by 4.8% and
industrial output by 3%, while the service sector experiences a relatively minor
reduction of less than 1%. These results are expected, as the agricultural sector
is typically the most vulnerable to adverse weather conditions. However, the
findings also indicate that prolonged droughts lead to broader economic losses
across sectors. In urban municipalities, although there is some evidence of
negative effects on economic activity, the estimated coefficients are consistently
smaller than those for rural municipalities, suggesting that the economic
impact of drought is less severe in urban areas.

While we do not directly assess the effects on employment, it is likely that
droughts cause a sharp reduction in employment in rural areas. Albert et al.
(2021) observes that droughts lead to a significant reduction in agricultural
employment in Brazil, with workers that stay in affected regions partially

reallocating to the manufacturing sector.
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Tabela 3.3: Impact of Prolonged Droughts on Agriculture and Economic
Outcomes

Agriculture Outcomes GDP

(1) 2) (3) (4) (5) (6)

Planted Area Harvested Area Production Value Agriculture Industry  Services

Panel A: Rural Municipalities

SPEI 0.0510** 0.0802** 0.0966*** 0.0401*  0.0205*  0.0048***
(0.005) (0.006) (0.006) (0.003) (0.003) (0.001)
R2%adj 0.0463 0.0479 0.0462 0.0832 0.0198 0.1696
Drought -0.0637*** -0.1172%* -0.1343*** -0.0473***  -0.0306™* -0.0060**
(0.008) (0.010) (0.010) (0.005) (0.007) (0.002)
R%adj 0.0434 0.0448 0.0416 0.0777 0.0194 0.1693
Moderate Drought -0.0216** -0.0694*** -0.0960*** -0.0255***  -0.0138* -0.0039
(0.009) (0.010) (0.010) (0.006) (0.008) (0.003)
Severe Drought -0.1410%* -0.2049*+* -0.2047++* 0.0871**  -0.0614**  -0.0100***
(0.010) (0.020) (0.020) (0.006) (0.009) (0.003)
R2adj 0.0486 0.0495 0.0441 0.0816 0.0207 0.1695
Observations 38799 38742 38741 38853 38817 38853
Panel B: Urban Municipalities
) (8) 9) (10) (11) (12)
SPEI -0.0184 -0.0061 0.0019 0.0093 0.0151  0.0047**
(0.050) (0.040) (0.040) (0.010) (0.007) (0.002)
R%adj 0.0238 0.0239 0.0239 0.0797 0.3041 0.1340
Drought 0.0426 0.0214 -0.0013 -0.0277*  -0.0239**  -0.0066
(0.070) (0.060) (0.050) (0.010) (0.008) (0.004)
R%adj 0.0242 0.0241 0.0239 0.0809 0.3037 0.1335
Moderate Drought 0.0731 0.0483 0.0330 -0.0276**  -0.0236**  -0.0098**
(0.080) (0.080) (0.060) (0.010) (0.010) (0.004)
Severe Drought -0.0098 -0.0248 -0.0604 -0.0278 -0.0245*  -0.0005
(0.050) (0.050) (0.070) (0.020) (0.010) (0.005)
R2%adj 0.0259 0.0254 0.0258 0.0808 0.3037 0.1341
Observations 9812 9799 9798 10367 10381 10386
Municipality FE X X X X X X
Year FE X X X X X X

Note: This table presents the estimation of the impact of prolonged droughts conditions on agriculture outputs
and local economy. Each column represent a different outcomes. All outcomes are expressed in the logarithmic
scale Panel A reports the results for rural municipalities, and Panel B for urban ones. The SPEI (Standard
Precipitation-Evapotranspiration Index) is used as the measure of drought. Drought is defined as SPEI < -1,
Moderate Drought as -1.5 <SPEI<-1, and Severe Drought as SPEI <-1.5. Standard errors are clustered at the
municipality level. Significance levels: * p < 0.10, ** p < 0.05, ** p < 0.01

3.5.3
Discussion

Our results indicate that droughts significantly increase IPV rates and
negatively affect agricultural and economic outputs in rural municipalities.
In contrast, in urban areas there are only transitory effects on IPV, with no

significant impact on agricultural outcomes and smaller effects on economic



Capitulo 3. Droughts, Economic Distress, and Intimate Partner Violence:
Evidence from Brazil 48

activity compared to rural areas.

These findings suggest a causal pathway linking droughts and IPV. In
rural areas, droughts reduce family income, which is heavily dependent on
agricultural production, thereby increasing the likelihood of women becoming
victims of IPV. In contrast, urban areas benefit from more diversified income
sources that are less reliant on agriculture, making the population less vulne-
rable to weather shocks and, consequently, reducing the probability of women
experiencing I[PV in response to droughts.

The evidence that the risk of IPV increases with drought duration and
intensity in rural areas can be understood through both the family stress
model and bargaining models. According to the family stress model, prolonged
economic pressure caused by long-term droughts can accumulate household
tensions, which may trigger violence. Bargaining models, on the other hand,
provide insight into how these economic shocks affect power dynamics within
families. As income becomes scarce, women’s outside options may decline,
particularly due to reduced access to off-farm income opportunities. With men
often retaining greater control over economic resources and women becoming
more dependent on family income, women’s bargain power is reduced, which
contributes to an increase in IPV.

Moreover, in rural areas, gender roles are often more rigid, and violence
against women is more socially accepted. Many of these women live in isolated
areas, where protection and support services, such as women’s shelters or
specialized police stations, are scarce, making it even more difficult for them
to seek help. The combination of economic challenges imposed by droughts,
social norms unfavorable to women, and a lack of support services makes rural
women particularly vulnerable to IPV.

In terms of identification, the comparison between rural and urban
areas helps address concerns about omitted variable bias. Droughts are often
correlated with high temperatures, raising the possibility that our results might
reflect the influence of heat rather than drought. Previous research has shown
that high temperatures can increase interpersonal violence by heightening
discomfort, frustration, and aggression Henke & chi Hsu (2020); Mahendran
et al. (2021). However, if temperature were the primary driver, we would expect
the predominance of short-term effects, as well as similar impacts in both
rural and urban areas. The fact that we observe stronger and greater effects in
rural areas—particularly during medium and long-term droughts—suggests
that droughts and their impacts on the local economy, rather than high

temperatures, play a more significant role in driving IPV.
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3.5.4
Robustness Checks

In this section, we perform two key robustness checks to validate our
findings, focusing on rural municipalities.

First, we show that the results are robust when using an alternative
drought indicator. In Table 3.4, we compare the estimation of drought effects
on rural municipalities between the SPI and SPEI indices, applying the same
thresholds to define droughts. The analysis focuses on long-term droughts (12
months). When using the SPI index, we also control for monthly average
maximum temperature. The consistency in results across both indices, with
similar coefficients and significance levels, underscores the reliability of our

drought indicators.

Tabela 3.4: The Effect of Long Term Drought on IPV in Rural Brasil -
Alternative Drought Index

SPI SPEL
Tndex 0.0191%*  -0.0247***
(0.006)  (0.007)
R2 0.0379  0.0378
Drought 0.0526™*  0.0582***
(0.010)  (0.010)
R2 0.0380  0.0379

Moderate Drought 0.0365"*  0.0428"**
(0.010) (0.010)
R? 0.0380 0.0379
Severe Drought 0.0734**  0.0765***
(0.020) (0.010)
R? 0.0380 0.0380
Observations 465,912 466,236

Notes: This table compares the effects of long-term
droughts on IPV using the SPI and SPEI indices
at 12-month time scale. SPEI is the Standardized
Precipitation-Evapotranspiration Index, while SPI is
the Standardized Precipitation Index. The dependent
variable is THS transformation of the rate of IPV no-
tifications per 100,000 women. Drought is defined as
Index < —1, Moderate Drought as —1.5 < Index <
—1, and severe drought as Index< —1.5. Standard
errors are clustered at the municipality level. Signifi-
cance values: * p < 0.10, ** p < 0.05, *** p < 0.01
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Next, we test the robustness of our results by allowing flexibility in the
main model. In Table 3.5, each column represents a different specification:
the benchmark model, an unweighted regression, clustering at the microregion
level, and using the raw IPV rate as the dependent variable instead of its
[HS transformation. The main results remain consistent across all specificati-
ons. The unweighted regression suggests that the estimated impacts are not
disproportionately influenced by larger municipalities. Clustering at the micro-
region level accounts for potential spatial dependence between IPV rates and
drought by allowing error correlation across broader geographic areas. Finally,
using the raw [PV rate instead of the IHS transformation simplifies result in-
terpretation and suggests larger drought effects, although this approach may

be more sensitive to extreme values, potentially introducing distortion.

Tabela 3.5: The Effect of Prolonged Droughts on IPV in Rural Brazil -
Alternative Model Specifications

(1) (2) ®3) (4)
Benchmark Model Unweighted Regression Microregion Cluster Dep Var: IPV Rate

SPEI -0.024 7% -0.0381*** -0.0247** -0.2318**
(0.007) (0.004) (0.008) (0.07)
Drought 0.0582** 0.0716*** 0.0582** 0.4467**
(0.01) (0.007) (0.01) (0.1)
Moderate Drought 0.0428"* 0.0484*** 0.0428** 0.2343*
(0.01) (0.007) (0.01) (0.1)
Severe Drought 0.0765*** 0.0976*** 0.0765*** 0.7001*
(0.01) (0.009) (0.02) (0.2)
Municipality FE X X X X
Time FE X X X X
Observations 466236 466236 466236 466236

Notes: This table presents the effects of droughts on IPV estimated using alternative specifications for the benchmark model.
Each columns represents implements a different modification of the benchmark model. SPEI is the Standardized Precipitation-
Evapotranspiration Index, while SPI is the Standardized Precipitation Index. Drought is defined as Index < —1, Moderate Drought

as —1.5 < Index < —1, and severe drought as Index< —1.5. Standard errors are clustered at the municipality level. Significance

levels: * p < 0.10, ** p < 0.05, *** p < 0.01

3.6
Conclusion

This study sheds light on the significant impact of droughts on IPV in
Brazil, particularly in rural municipalities. Our analysis reveals that prolonged
and intense droughts are associated with higher rates of IPV in rural areas. In
contrast, in urban areas, the effects of drought appear to be transitory, with
impacts diminishing within one month.

By comparing the effects on IPV rates, agricultural outcomes, and eco-

nomic activity in rural and urban municipalities, we provide strong evidence
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that the economic channel plays a crucial role in driving IPV. This dispa-
rity highlights the economic vulnerabilities faced by rural households, where
livelihoods are heavily dependent on agriculture and thus more susceptible to
adverse weather shocks.

Drawing from theoretical models, we argue that in rural areas, economic
hardship leads to heightened stress, exacerbates household tensions, and
reduces women’s bargaining power, ultimately contributing to an increase
in IPV. Conversely, in urban municipalities, where income sources are more
diversified, the economic consequences of droughts are less severe, resulting in
a weaker link between droughts and IPV.

These findings suggest the need for targeted interventions to support
women during times of drought. Interventions such as direct cash transfers to
women, vocational training programs, and improved access to essential servi-
ces—such as police protection, shelters, healthcare, and legal assistance—can
help strengthen women’s resilience to droughts, thereby reducing their vulne-
rability to IPV.

While this study offers valuable insights, it is important to acknowledge
its limitations. Our measure of IPV is based on compulsory healthcare noti-
fications, which may underreport less severe cases. Furthermore, the limited
availability of healthcare services and protection for women in rural areas could
lead to further underreporting. Nevertheless, we believe our results represent
a lower bound on the actual impact of drought on IPV.

This study explores the intersections of climate extremes, economic
stress, and gender-based violence, highlighting the heightened vulnerabilities

faced by rural women in the context of climate change.
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Additional Results

Figura B.1: Heterogeneous Effect of Drought on IPV

Heterogeneous Effects of Drought on IPV

Aggressor
0
8
o
© o
g | >
©
8
<
2
<
3
[s\} o
S S
o |
=4

Drought (12-month)

® all_sample ® husband
® ex_husband ® boyfriend or e}

Victim Age

|

Drought (12-month)

@ all sample
e 30-39
® 50+

® 15-29
® 40-49

Victim Race/Color

Drought (12-month)

@ all sample ® white
® n_white

Notes: This figure shows the heterogeneous effects of droughts on IPV by

the relationship between the victim and the aggressor, the victim’s age,

and the victim’s race or color.



4
The Impact of Extreme Rainfall on Learning: Evidence from
Southern Brazil

4.1
Introduction

Do temporary disruptive shocks affect student achievement? In this
paper, we explore the short-term impacts of extreme rainfall shocks on student
learning outcomes. Education is a process shaped by a wide range of inputs that
contribute to the development of knowledge and skills. Although learning is
cumulative, we demonstrate that even brief disruptions—such as those caused
by extreme weather events—can hinder this process. With the increasing
frequency of extreme weather events, these short-term effects may accumulate,
leading to broader consequences both at the individual level—impacting future
earnings and productivity—and at the aggregate level, influencing economic
growth and income distribution (Hanushek & Woessmann, 2008).

In the empirical setting of Southern Brazil, where heavy rainfall is
one of the most frequent and disruptive hazards, we examine the impact of
extreme rainfall on student performance in a national standardized exam—the
SAEB (Sistema Nacional de Avaliagio da Educagio Bdsica). *' The exam is
administered every two years to public school students, being part of a system
designed to assess the quality of education in Brazil. Our focus is on 9th-
grade students who are at a critical point in their school journey, marking the
transition from middle school (Ensino Fundamental) to high school (Ensino
Médio).

We combine student-level data from the SAEB exam with municipality-
level measures of extreme rainfall, derived from high-resolution gridded daily
precipitation data. Extreme rainfall is defined as the number of days in the
school year when precipitation exceeds specific thresholds. We test 10 mm, 20
mm and 50 mm thresholds, with the main focus on the latter. The final sample
includes test scores for 1,144,385 students attending 6,048 schools across 1,169
municipalities.

41Brazilian South encompasses three states: Parand, Santa Catarina, and Rio Grande do

Sul. This region is home to almost 15% of the Brazilian population. Historically, it has been
one of the most impacted areas by natural disasters in Brazil
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To identify the causal impact of extreme rainfall, we estimate a linear
regression model that leverages within-municipality variation in extreme rain-
fall episodes across years. While we cannot track students over time, we can
track schools, which allows us to incorporate school fixed effects into the mo-
del, and control for time-invariant school-level inputs and municipality-specific
characteristics that could correlate with both student outcomes and rainfall.
Additionally, year fixed effects absorb common time trends that may influence
all students. By controlling for time-varying student characteristics, we further
mitigate the risk that systematic differences in observable student traits could
influence our results. The combination of school fixed effects, year fixed effects,
and time-varying student controls provides a robust framework to isolate the
effect of extreme rainfall on student performance.

Our results show that extreme rainfall disrupts student learning. Speci-
fically, we find that three additional days of rainfall above 50 mm (the sample
median) reduce math scores by 0.023 standard deviations and language sco-
res by 0.017 standard deviations. Although these effects may seem modest,
we demonstrate that they increase with both the intensity of rainfall and du-
ration of rainfall exposure. Furthermore, heterogeneous analysis reveals that
extreme rainfall exacerbates existing educational inequalities, disproportiona-
tely affecting vulnerable groups such as non-white students, students from
lower socio-economic backgrounds, and lower-achieving students—

Next, we explore whether students attending schools located near areas
at risk for rainfall-related disasters are more vulnerable to the impacts of severe
rainfall. However, we do not find evidence that proximity to these risk zones
exacerbates the adverse effects of extreme weather on student outcomes. This
could suggest the presence of adaptation efforts by schools and municipalities.

We also investigate whether loss of instructional time is a mechanism
through which extreme rainfall affects student performance. The findings
suggest that extreme rainfall is associated with an increased likelihood of school
principals reporting temporary interruptions of school activities, although we
do not observe significant effects on proxies for student or teacher absences or
school physical infrastructure quality.

To ensure the robustness of our results, we conduct several checks.
First, we show that future rainfall shocks do not affect current test scores,
suggesting that we are not capturing a spurious correlation between rainfall
and academic performance. We also examine the possibility of selection bias
among students taking the exam. Our analysis shows no significant association
between rainfall and the observable characteristics of students who attended

the exam, indicating that selection bias is unlikely to drive our results.
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Our paper is closely related to studies on how natural disasters affect
student outcomes. Past literature has shown that events like earthquakes,
hurricanes, and floods significantly impact student achievement, enrollment,
dropout, and other educational outcomes(e.g Sacerdote (2012); Marchetta
et al. (2019); Thamtanajit (2020); Segarra-Alméstica et al. (2022)). We extend
this evidence by examining the direct effect of rainfall—an event that typically
causes less damage than major disasters but that occurs more frequently.
Studies focusing on rainfall typically define extreme shocks as temporary
deviations in precipitation accumulated over a period (e.g., a month or year)
from the long-term averages for a specific location (e.g Rosales-Rueda (2018);
Aguilar & Vicarelli (2022); Palacios & Rojas-Velasquez (2023)). However, we
argue that such measures can smooth out the effects of short-term, high-
intensity rainfall days, leading to an underestimation of their immediate
and disruptive impact on the education system. By focusing on absolute
daily rainfall thresholds, our approach more accurately captures the critical,
localized disruptions caused by single-day or few-days of heavy rainfall.

In the Brazilian context, our paper closely relates to Ferreira de Lima
et al. (2024), who also estimate the impact of rainfall shocks on SAEB exam
performance. Nevertheless, our works differ in terms of empirical context,
methodology, and results. While they restrict their analysis to 826 Brazilian
municipalities with mapped risk areas and compare the performance of stu-
dents attending schools near and far from these areas, we focus on the Southern
region and analyze short-term, high-intensity rainfall events across all muni-
cipalities in the region. Ferreira de Lima et al. (2024) measure rainfall shocks
as monthly deviations from local averages, finding that students with higher
socioeconomic status and better prior academic performance are more negati-
vely affected. In contrast, we focus on absolute daily thresholds and find that
vulnerable students are more impacted. These differences may reflect both
methodological choices and differences in empirical context.

The remainder of this paper is structured as follows: Section 4.2 reviews
the literature on mechanisms through which rainfall shocks may negatively
affect learning. Section 4.3 describes the data, defines learning outcome vari-
ables,the construction of extreme rainfall indicator, and presents descriptive
statistics. Section 4.4 details the empirical strategy and the identification hy-
pothesis. Section 4.5 presents and discusses the main results, including hetero-
geneous analyses, and potential mechanisms. Section 4.6 covers the robustness

checks and Section 4.7 concludes.
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4.2
Literature Review: How Do Rainfall Shocks Disrupt Learning?

Drawing from past literature, we identify three key channels through
which severe rainfall episodes can undermine learning: loss of instructional
time, income losses, and health-related issues. In this section, we discuss and
present evidence of each one of these mechanisms.

The most direct way that extreme rainfall affects student outcomes
is through the loss of instructional time. Heavy rainfall can force school
closures due to damage or destruction of infrastructure or by disrupting
essential services such as electricity and transportation. Even when schools
remain open, rainfall often leads to increased absenteeism among students
and teachers. For instance, a study in Brazil by Santana et al. (2013) find
that student attendance dropped from 77% on non-flood days to just 27% on
flood days, primarily for transportation challenges. Furthermore, past research
has consistently demonstrated that loss of instruction time impact academic
performance. Goodman (2014) observes that snow-related absences reduced
math achievement in Massachusetts, while Bekkouche et al. (2023) show that
exposure to rainy days in Sub-Saharan Africa led to lower test scores, likely
due to increased teacher absenteeism. Similarly, Monteiro & Rocha (2017) note
that violence shocks in Rio de Janeiro are related to higher teacher absenteeism
and lower math performance in the SAEB exam.

Rainfall shocks can also affect student achievement by reducing hou-
sehold income. Much of this literature explores the relationship between rainfall
shocks during early stages of life and later outcomes, especially in rural envi-
ronments. Rainfall anomalies—whether droughts or excessive rainfall—reduce
family incomes, which in turn lowers investments in crucial human capital
inputs, such as nutrition, thereby compromising children’s cognitive develop-
ment. For example, Aguilar & Vicarelli (2022) show that children from rural
communities in Mexico exhibit lower cognitive development four years after
being exposed to exogenous precipitation anomalies during early childhood.
Additionally, another part of the literature focuses on the trade-off between
schooling and working, as income losses may lead families to prioritize work
over education and reduce attendance and the probability of advancing in
school (Marchetta et al., 2019; Duryea et al., 2007).

Finally, extreme rainfall can deteriorate student health. Flooding from
excessive rainfall can damage water and sewage systems, leading to the
spread of diseases such as diarrhea, leptospirosis, and vector-borne diseases. In
addition, student mental health may also be affected if children develop post-

traumatic stress disorder as a consequence of natural disasters triggered by
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heavy rain. Previous research has shown a strong association between health
status and educational outcomes (Bleakley, 2007; Currie et al., 2010).

In summary, while all three mechanisms—Iloss of instructional time,
income losses, and health-related issues—are important, this study primarily
focus on the disruption of instructional time. However, it is important to
recognize that these mechanisms often overlap, making it challenging to isolate

their individual impacts on student outcomes.

4.3
Data

To conduct the empirical analyses, we combine student-level data on
SAEB exam performance and student characteristics with annual indicators
of extreme precipitation at the municipality level. We also incorporate school-
level data on infrastructure quality and proxies for school closures, as well
as student and teacher absenteeism, extracted from surveys linked to SAEB.
The data spans the years 2011, 2013, 2015, 2017, and 2019 — the SAEB
exam years. In this section, we describe each data source, define the outcome
variables, explain the construction of extreme rainfall indicators, and present

descriptive statistics.

4.3.1
Education

To measure educational outcomes, we use student-level data from the
SAEB exam, a nationwide standardized test that assesses the math and
language (Portuguese) performance of 5th- and 9th-grade students in Brazil.
The exam is mandatory for public schools with more than 20 students
enrolled in each grade and is administered every two years, typically in late
October or November. Data from the exam are provided by the National
Institute for Research on Education (Instituto Nacional de Estudos e Pesquisas
Educacionais Anisio Teixeira, INEP), which is also responsible for the exam’s
development. We use data from five exam editions: 2011, 2013, 2015, 2017, and
2019.

The indicators of student achievement are the 9th-grade student scores in
math and language, which are standardized by INEP to ensure comparability
across different years. Importantly, the primary goal of the SAEB exam
is to evaluate the quality of public education in Brazil. Notably, students’
performance on the exam has no direct academic consequences for them,

meaning it does not impact students’ promotion or retention.
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Students, teachers, and principals from schools participating in the SAEB
exam also complete surveys. The student survey collects information on socio-
demographic characteristics, such as race, gender, age, family background and
household assets. This data allows us to explore the heterogeneous effects of
rainfall and serves as control variables in different model specifications. The
principal survey includes questions such as “Has the functioning of the school
been hindered by any of the following issues 7", covering topics like interruption
of school activities, teacher and student absenteeism These responses help us
assess whether rainfall disrupts normal school functions.

Moreover, between 2011 and 2017, the SAEB included a survey evalua-
ting the physical conditions of school infrastructure, conducted by an external
reviewer. The condition of infrastructure components, such as electricity, water
supply, walls, and roofs, and rated on a scale from zero (nonexistent) to three
(good). We obtain a simple average of these ratings to create an infrastructure
quality index, allowing us to study the potential impact of rainfall on school
infrastructure. For instance, we classify infrastructure as “good'"if the index is

above the median.

4.3.2
Rainfall

The source of our weather data is the Brazilian Daily Weather Gridded
Data (BR-DWGD) from Xavier et al. (2022). The current version of BR-
DWGD provides daily rainfall data at a spatial resolution of 0.1 x 0.1 degrees,
obtained by interpolating observational rainfall records.

To obtain daily rainfall series at the municipality level, we average the
grid cell values that fall within the municipality boundaries. Since our goal is to
identify the impact of rainfall during the school year on students’ performance,
we use only precipitation records from the months between February and
October, which we define as the school year; January is excluded because it is
the school vacation month, and November and December are excluded as they
may fall after the test dates. For each municipality, we count the number of
days during the school year when precipitation amounts exceed 10 mm/day, 20
mm/day, and 50 mm/day. These thresholds are recommended by the Expert
Team on Climate Change Detection and Indices (ETCCDI) to classify rainfall
extremes. *2

To account for climate heterogeneity across municipalities, we also rely
on an alternative definition of extreme rainfall: days that fall within the upper

range of the historical distribution of rainy days (i.e., days with precipitation

42nttps://etccdi.pacificclimate.org/list_27_indices.shtml
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> lmm/day) at each location, calculated over the 1981-2010 period. In this
approach, extreme rainfall is defined as rainy days that exceed the 90", 95,

or 99" percentiles.

4.3.3
Other Data

We complement our analysis by incorporating additional sources of school
and municipality data. To identify schools located near risk areas for rain-
related disasters, we merge data from the Statistical Territorial Base of Risk
Areas (BATER) with the schools’ locations provided by INEP. BATER results
from a partnership between the Instituto Brasileiro de Geografia (IBGE) and
the Centro de Monitoramento e Alerta de Desastres Naturais (CEMADEN).
It consists of vector data (shapefiles), where each polygon represents a distinct
risk area. In the South Region, there are 1,293 risk areas across 144 monitored
municipalities.

We calculate the distance of each school to the nearest risk area and
consider them to be within a risk zone if the distance is less than B meters
from the risk area. For robustness, we use different values for B, specifically
250 and 500 meters.

4.3.4
Sample Selection and Summary Statistics

The estimation of the impact of severe rainfall episodes on student
achievement is always conditional on school and year fixed effects. Therefore,
we exclude from the sample schools that only participated in a single SAEB
edition. Notably, in 2019, the student surveys did not include a question about
gender. To avoid losing data, we impute the missing gender information for
2019 using the school’s average gender distribution from previous editions in
our regression. The final sample includes test scores for 1,444,385 students
attending 6,048 schools across 1,169 municipalities. We present summary
statistics of the sample in Table 4.1. The number of observations varies across
variables due to some students or principals not responding to certain survey

questions.
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Tabela 4.1: Descriptive Statistics
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Mean SD Min Max N

Student Data

Math 0.19 0.81 -950 9.80 1,144,385
Language 0.083 0.85 -9.60 7.20 1,144,385
Non White 0.40 049 0.00 1.00 1,034,273
Female 0.51 0.50 0.00 1.00 926,782
Low Educated Mother 0.57 0.50 0.00 1.00 913,815
Poor 022 041 0.00 1.00 1,135,495
Previously Repeated 0.30 046 0.00 1.00 1,117,815

Previously Dropped Out  0.038 0.19 0.00 1.00 1,119,278

School Data

Infrastructure Index 242 049 0.00 3.00 1,209,654
Good Infrastructure 0.50 0.50 0.00 1.00 1,209,654
Teacher Absence 0.58 049 0.00 1.00 1,404,208
Student Absence 0.54 0.50 0.00 1.00 1,404,570
School Closure 0.28 045 0.00 1.00 1,403,866

Weather Data

# R10 43.4 850 11.00 72.00 1,456,881
# R20 21.1  5.78 4.00 40.00 1,456,881
# R50 298 207 0.00 14.00 1,456,881
# Rp90 134  4.66 0.00 28.00 1,456,881
# Rp95 729 329 0.00 20.00 1,456,881
# Rp99 1.77 144 0.00 9.00 1,456,881

Note: The table presents summary statistics for students and schools participation
in SAEB exam, as well municipality-level conditions in 2011, 2013, 2015, 2017
and 2019. Data from SAEB exam are provided by INEP, while daily precipitation
information comes from BR-DWGD. The number of observations varies across

variables due to missing information.

4.4
Empirical Strategy

To identify the causal impact of extreme rainfall, we exploit within-
municipality variations in extreme rainfall episodes across years. More spe-
cifically, we estimate a linear model with fixed effects, as described by the

equation below:
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Yismt = ¢+ LRy + AXjome + Ve + s + Eisme (4.1)

In equation 4.1, 7 indexes students, s denotes school, m indicates muni-
cipality, and ¢ corresponds to the year. The dependent variable, ¥;sm:, is the
student’s test score on the math or language test. The variable of interest, R,
represents the number of days with precipitation exceeding a predetermined
threshold (we use 10 mm, 20 mm, and 50 mm) during the school year (March -
October). The term X, is a set of student-level socio-demographic controls,
including dummy variables for student gender, race/ethnicity, whether the stu-
dent has repeated a grade or dropped out of school before, and whether the
student’s mother is low-educated (i.e.,did not complete middle school). The
term p, represents school fixed effects, which account for any time-invariant
factors at the school (and municipality) level, such as the school’s geographic
location, baseline educational quality, and long-term rainfall patterns in the
municipality. Year fixed effects, represented by 7, , capture time trends com-
mon to all municipalities in the region, such as economic activity, regional
weather phenomena (like El Nifio), and common educational policies. Finally
Eismt 18 @ random error term. We cluster standard errors at the municipality
level, the level in which rainfall is observed.

The parameter of interest § estimates the effect of extreme rainfall days
on student test scores. Identification requires that, conditional on school and
year fixed effects, and on student-level controls, intense precipitation episodes
are uncorrelated with any other determinants of student performance on the
SAEB exam. Since we focus on short-term, intense rainfall episodes, it is
unlikely that these events are systematically related to other factors influencing
student outcomes. Furthermore, we conduct a robustness checks showing that
future rainfall does not affect current proficiency, reinforcing that we are not
capturing a spurious correlation.

Another potential issue regarding identification is the possibility that
extreme rainfall introduces selection bias among the students who take the
exam. For instance, if low-ability students are more likely to miss the SAEB
exam in response to heavy rainfall, we may underestimate the effect on test
scores. Conversely, if high-ability students are more likely to miss the test,
we could be capturing a worsening of the pool of students taking the exam
rather than the actual causal impact of intense precipitation on academic
achievement. Since we do not observe the characteristics of students who do
not participate in the exam, we investigate whether rainfall is correlated with
the socioeconomic characteristics of students who do take the exam. We do

not find evidence of selection bias.
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Lastly, to address concerns regarding spatial and temporal correlation in
rainfall, we demonstrate that our estimates are robust to two-way clustering
at the municipality and microregion-year levels. Municipality-level clustering
addresses serial correlation, while microregion-year clustering mitigates poten-
tial correlations in rainfall across municipalities within the same microregion
(Assuncao et al., 2023).

4.5
Results

In this section, we present the impact of extreme rainfall on student
performance in the SAEB exam. We explore how these effects vary based on
student background, school infrastructure quality, and proximity to areas at

risk for natural disasters.

4.5.1
Main Results

Table 4.2 presents the results of the estimation of equation 4.1. The first
three columns show the impact on math scores, while the last three focus on
language scores. We estimate separate regressions for days with precipitation
exceeding 10 mm/day, 20 mm/day, and 50 mm/day. All specifications include
school and year fixed effects. Columns (1) and (4) control for school and year
fixed effects, columns (2) and (5), add student-level controls. Columns (3) and
(6) report the results of the full specification using the two-way clustering
method.

The results reveal a clear negative relationship between extreme rainfall
and performance in both math and language tests, with the effect being more
pronounced for math. The coefficients for the number of days with precipitation
above 10 mm/day, 20 mm/day, and 50 mm/day are consistently negative across
all specifications, indicating that an increase in the number of intense rainfall
days is associated with lower test scores. Furthermore, the impact intensifies
as the rainfall threshold increases, suggesting that more severe rainfall events
have a greater detrimental effect on student learning outcomes.

Importantly, the effect is not driven by student selection on observed
characteristics, as the coefficients remain statistically significant when control-
ling for student covariates. Moreover, the effects are robust to the two-way
clustering method.

In our preferred specification, we estimate that three additional days with
rainfall above 50 mm/day (the sample median) reduce math scores by 0.023

standard deviations and language scores by 0.017 standard deviations.
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Tabela 4.2: The Impact of Extreme Rainfall Days on SAEB Test Scores

Math Scores Language Scores
(1) (2) 3) (4) (5) (6)
# R10 -0.0013=* -0.0019*** -0.0019*  -0.0005 -0.0012** -0.0012**
(0.0004)  (0.0004)  (0.0006)  (0.0004)  (0.0004)  (0.0005)
R2%adj 0.1283 0.2137 0.2137 0.1153 0.2115 0.2115
# R20 -0.0025"*  -0.0030*** -0.0030™* -0.0019*** -0.0026™* -0.0026***
(0.0007)  (0.0006)  (0.0008)  (0.0006)  (0.0006)  (0.0007)
R2adj 0.1283 0.2137 0.2137 0.1153 0.2115 0.2115
# R50 -0.0079**  -0.0078*** -0.0078"* -0.0055"** -0.0058*** -0.0058"***
(0.0010)  (0.0010)  (0.0020)  (0.0010)  (0.0010)  (0.0010)
R%adj 0.1284 0.2138 0.2138 0.1154 0.2116 0.2116
Observations 1,144,385 827,935 827,935 1,144,385 827,935 827,935
School FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Student-Level Controls N Y Y N Y Y
Two-Way Clustering N N Y N N Y

Notes: This table presents the estimation of the effects of extreme rainfall on students performance in the SAEB
exam. The dependent variable in columns (1)-(3) is math score, while in columns (4)-(6), it is language scores.
The independent variables are the number of days during the school year with precipitation exceeding 10 mm/day,
20 mm/day, and 50 mm/day. We run separate regressions for each of these precipitation thresholds. Student-level
controls include information on gender, race, family income, mothers’ education, and whether the student has

repeated a grade or dropped out of school before. The inclusion of student-level controls reduces the number of

observations, as some information is missing. In columns (1)-(2) and (4)-(5), standard errors are clustered at the

municipality level. In columns (3) and (6), the standard errors are clustered at the municipality and micro-region-

year levels. Significance Levels: * p < 0.10, ** p < 0.05, *** p < 0.01

We provide additional evidence on how increased exposure to intense
rainfall shocks negatively impacts student test scores by categorizing the
number of days with rainfall above 50 mm/day into intervals: 1-2 days, 3-
4 days, 5-6 days, and 7 or more days. We estimate the full specification of
equation 4.1, using these groups as independent variables. The reference group
consists of students who experienced zero days of rainfall above 50 mm in
a given school year. Figure 4.1 illustrates this analysis. The results show a
clear and significant decline in math scores as the number of intense rainfall
days increases. Specifically, students exposed to 7 or more days of rainfall
above 50 mm during the school year experience a reduction in math scores of
approximately 0.075 standard deviations. For language scores, a negative trend
is also observed, though the effect is smaller, with an estimated reduction of

around 0.055 standard deviations for 7 or more days of intense rainfall.
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Figura 4.1: The Impact of Extreme Rainfall on SAEB Test Scores by Number
of Days with Rainfall above 50 mm
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Notes: This figure shows the effect of the number of days
during the school year with precipitation exceeding
50 mm on student scores in math and language. We
categorize this variable into intervals: 1-2 days, 3-4
days, 5-6 days, and 7 or more days. The specification
includes school and year fixed effects, as well as student-
level controls. The dots represent the point estimates,
and the lines represent the 95% confidence intervals.

Standard errors clustered at the municipality level.

To better contextualize these effects, we compare our findings with other
studies examining the relationship between weather and academic performance
in standardized exams. For instance, in the United States, Park et al. (2020)
find that a 1°F increase in temperature during the year prior to the PSAT test
lowers scores by approximately 0.2 percent of a standard deviation. Bekkouche
et al. (2023) report a reduction of 0.05 standard deviations in test scores for
each additional rainy day among students in Sub-Saharan Africa. Thamtanajit
(2020) estimate that floods lead to reductions in test scores ranging from
0.03 to 0.11 standard deviations. In Brazil, Ferreira de Lima et al. (2024)
find that rainfall reduce math performance by 0.055 standard deviations for
students attending schools near high-risk areas. Our coefficients align with
these findings, indicating a significant negative impact of extreme rainfall
on student achievement, although the magnitude of the effect in our context

appears smaller.
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4.5.2
Heterogeneity Analyses

4.5.2.1 Students Socioeconomic Characteristics

Adverse weather conditions may disproportionately affect certain groups
of students. Table 4.3 explores the heterogeneous effects of extreme rainfall
on math scores across different socioeconomic characteristics. Each column
presents the results of a regression in which a specific student characteristic
is interacted with the number of rainy days with precipitation exceeding 50
mm /day, while controlling for the remaining characteristics.

The analysis reveals that heavy rainfall has a more pronounced ne-
gative impact on non-white students, those from low socioeconomic back-
grounds—such as students from poor families and with less-educated
mothers—and students who have previously repeated a grade or dropped out
of school. On average, these groups already have weaker academic performance,
and heavy rainfall further exacerbates existing educational inequalities.

One concern is the potential endogeneity of poverty in our setting, as it
may be affected by rainfall shocks. However, we address this issue in Section
4.6.
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Tabela 4.3: Heterogeneous Effects of Extreme Rainfall on Math Test Scores by
Student Characteristics

Dependent Variable: Math Scores
(1) 2 (3) (4) (5) (6)
# R50 -0.0053***  -0.0060*** -0.0063*** -0.0075*** -0.0069"** -0.0075***
(0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

Female -0.1638**
(0.009)
Female x #R50 -0.0031
(0.002)
Non White -0.0953**
(0.004)
Non White x # R50 -0.0047*
(0.001)
Low Educated Mother -0.1309***
(0.006)
Low Educated Mother x # R50 -0.0027*
(0.001)
Poor -0.0502***
(0.006)
Poor x # R50 -0.0053***
(0.002)
Previously Repeated -0.4376"*
(0.009)
Previously Repeated x # R50 -0.0034*
(0.002)
Previously Dropped Out 0.0376***
(0.010)
Previously Dropped Outx # R50 -0.0113"**
(0.003)
Observations 686,853 827,935 827,935 827,314 827,935 827,935
R? Adj. 0.2089 0.2138 0.2138 0.2142 0.2138 0.2138
School FE Y Y Y Y Y X
Year FE Y Y Y Y Y Y
Student-Level Controls Y Y Y Y Y Y

Notes: This table investigate heterogeneity of extreme rainfall by students characteristic. Dependent Variable
is math test score. Independent variable of interest is the number of days in the school year with precipitation
exceeding 50 mm/day. The sample size varies across columns due to missing information on students
characteristics. The standard errors are clustered at the municipality level. Significance Levels:

*p < 0.10, ™ p < 0.05, ™ p < 0.01.

4.5.2.2 Schools Location

Are students attending schools near rainfall-related risk areas more vul-
nerable to the impacts of extreme precipitation? We investigate this question
using two different approaches.

First, we compare the effects of rainfall on students in municipalities with
and without mapped risk areas (RA), providing a broad assessment of whether
living in risk-prone municipalities leads to lower SAEB exam performance. In

our sample, 144 out of 1,169 municipalities have identified risk areas. Although
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these municipalities represent only 12.3% of the total, they account for 40.81%
of the students. Second, within municipalities with risk areas, we analyze the
proximity of schools to these zones, comparing students attending schools
within 250 meters and 500 meters to those farther away. This more granular
approach allows us to assess whether closer proximity to risk areas exacerbates
the negative effects of extreme rainfall on student outcomes due to increased
risks of floods, landslides, and other disruptions.

However, as reported in Table 4.4, we do not identify significant diffe-
rentiated effects based on the proximity to risk areas on student performance
in either of these analyses. These null effects may be due to several factors,
including adaptation policies implemented by schools and municipalities that
mitigate the adverse impacts of rainfall, and limitations in the study’s design
or data, such as the reduced sample size when restricting the analysis to muni-
cipalities with mapped risk areas. A deeper investigation is necessary to fully

understand these results.

Tabela 4.4: Heterogeneous Effects of Extreme Rainfall on SAEB Test Scores
by Distance to Risk Areas

Math Scores Language Scores

(1) (2) (3) (4) (5) (6)
# R50 -0.0074**  -0.0107* -0.0101*** -0.0052*** -0.0084** -0.0084***
(0.001)  (0.003)  (0.003)  (0.001)  (0.003)  (0.003)

Risk Municipality x # R50 -0.0013 -0.0018
(0.002) (0.003)
Schools Within 250m of RA x # R50 0.0030 0.0022
(0.004) (0.004)
Schools Within 500m of RA x # R50 -0.0001 0.0015
(0.003) (0.003)
Observations 827,314 316,902 316,902 827,314 316,902 316,902
Rzadj 0.2147 0.2110 0.2110 0.2119 0.2025 0.2025
School FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Student-Level Controls Y Y Y Y Y Y

Notes: This table investigates whether students attending schools in localities near risk zones are disproporti-
onately affected by extreme rainfall. The dependent variable in columns (1)-(3) is students’ math scores, while
in columns (4)-(6) it is language scores. The independent variable is the number of days in the school year with
precipitation exceeding 50 mm/day. Risk municipalities are those with mapped risk areas.from schools Student-
level controls include information on gender, race, mothers’ education, and whether the student has repeated a
grade or dropped out of school before. The inclusion of student-level controls reduces the number of observations,

as some information is missing. The standard errors are clustered at the municipality level. Significance levels:
p < 0.10, ™ p < 0.05, ** p < 0.01.
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453
Mechanisms

Loss of instructional time is likely the most direct mechanism through
which extreme rainfall undermines learning. To explore this channel, we use
principal surveys to investigate whether rainfall is associated with a higher
likelihood of principals reporting student and teacher absences, as well as
interruptions to school activities. In addition, we examine the impact of heavy
rainfall on the physical condition of school infrastructure, based on evaluations
conducted by external reviewers. Table 4.5 summarizes the results, with each
column (1)-(4) representing a different outcome. For this analysis, we aggregate
the data at the school-level.

Our findings indicate that extreme rainfall increases the likelihood of
principals reporting concerns about interruptions to school activities. However,
there is no significant effect on student or teacher absences, nor on the quality
of school infrastructure. This suggests that while severe weather disrupts the
normal operation of schools, leading to a loss of instructional time, it may not
directly result in increased absenteeism or immediate deterioration of physical
infrastructure. Since these outcomes are based on survey responses rather
than actual attendance, the findings remain inconclusive, but they point to

a potential area for further investigation.

Tabela 4.5: The Impact of Extreme Rainfall on Loss of Instructional Time

(1) 2) 3) (4)
School Interruption Student Absence Teacher Absence Good Infr
# R50 0.0158"** 0.0009 0.0018 0.0017
(0.0050) (0.0020) (0.0020) (0.0030)
Observations 22,099 22,118 22,109 18,332
R2%adj 0.1130 0.2292 0.2907 0.2243
School FE Y Y Y Y
Year FE Y Y Y Y
School Level Controls Y Y Y Y

Notes: This table investigates the effect of rainfall on school instructional time loss. The dependent variables are

dummies indicating whether the school principal reported issues with school activity interruptions, student absence,
teacher absence, and whether the school was evaluated as having good infrastructure quality. The independent
variable is the number of day with rainfall exceeding 50 mm/day. Controls include average characteristics of
students taking the exam at that school. Standard errors are clustered at the municipality level. Significance
Levels: * p < 0.10, ** p < 0.05, *** p < 0.01

4.6
Robustness Checks

In this section, we investigate the robustness of our estimation in three

ways: (i) placebo analysis: we examine whether future rainfall shocks impact
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current student outcomes, (ii) student selection, and (iii) alternative rainfall

shock definitions.

4.6.1
Lagged and Lead Effects

Table 4.6 presents a robustness check for the impact of extreme rainfall
on student performance by analyzing both lagged and led effects of rainfall. In
columns (1) and (2), the dependent variable is math scores, while in columns
(3) and (4), is language scores. We find no association between past or future
days of intense rainfall and student performance. The null coefficients for
past shocks suggest that, at least in terms of academic achievement, the
effects of rainfall are transitory. Additionally, the absence of significant lead
effects supports the credibility of the identification strategy, indicating that

our findings are not driven by unobserved factors or spurious correlations.

Tabela 4.6: Lagged and Lead Effects of Extreme Rainfall on SAEB Test Scores

Math Scores Language Scores
(1) (2) (3) (4)
# R50 -0.0080*** -0.0077*** -0.0058*** -0.0059***

(0.001)  (0.001)  (0.001)  (0.001)

# R50 (t-1) 0.0024* 0.0007
(0.001) (0.002)
# R50 (t+1) -0.0014 0.0011
(0.002) (0.002)
Observations 827314 827314 827314 827314
R2adj 0.2142 0.2142 0.2119 0.2119
School FE Y Y Y Y
Year FE Y Y Y Y
Student-Level Controls Y Y Y Y

Notes: This table presents the placebo of extreme rainfall on student performance.
The dependent variables are math and language test scores. The independent variables
are the number of days with precipitation exceeding 50 mm/day in the current year,
past year, and following year. Standard errors are clustered at the municipality level. All
regression include year, school and student level controls. Significance levels: * p < 0.10,
** p < 0.05, *** p <0.01.
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4.6.2
Selection

Another concern regarding identification is the possibility that rainfall
might influence which students take the SAEB exam. If this were true, our
estimator could be capturing differences in student characteristics rather than
the causal effect of rainfall. Since we do not have data on the characteristics
of students who did not participate, we address this issue by demonstrating
that there is no association between rainfall and the observed characteristics
of the students who did take the exam in Table 4.7. This finding strengthens

the argument that our analysis is not compromised by selection bias.

Tabela 4.7: Student Selection at the SAEB Exam

1) (2) ®3) 4) (5) (6)

Female Non White Low Educated Mother Poor Previously Repeated Dropped Out

#R50 -0.0003 0.0002 0.0007* 0.0003 0.0008 0.0001
(0.0004)  (0.0004) (0.0004) (0.0006) (0.0010) (0.0002)
Observations 926,782 1,034,273 913,815 1,135,495 1,117,815 1,119,278
R%adj 0.0023 0.0692 0.1172 0.0680 0.0432 0.0124
School FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y

Notes: The table presents the test for selection-bias among students taking the SAEB Exam. Each column is
different dependent variable, corresponding for represents a observed characteristic of students participating in the
exam. Independent variable is number of days in school year with precipitation exceeding 50 mm/day. Standard

Errors are clustered at the municipality level. Significance levels: * p < 0.10, ** p < 0.05, ** p < 0.01.

4.6.3
Alternative Rainfall Measures

In table 4.8, we estimate the benchmark model using measures of
rainfall that accounts for municipalities heterogeneity in what is considered
of extreme. We use as independent variables the number of days in school
year when precipitation amount exceed the 90*", 95 and 99*" percentiles
of the municipality-specific distribution of precipitation in rainfall days. The
advantage of using these relative measures is that they address the possibility
that municipalities with frequent high rainfall may have already adapted by
developing infrastructure and policies that make them more resilient to the
effects of extreme precipitation. By defining extreme rainfall in this way, we
ensure that the rainfall classified as extreme is genuinely unexpected and
disruptive for that specific location. The results confirm the adverse impacts
of rainfall on student performance and show that the findings are robust to

alternative definitions of extreme rainfall.
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Tabela 4.8: Impact of Extreme Rainfall on Math and Language Scores Using
Alternative Rainfall Measures

Math Scores Language Scores
(1) 2 (3) (4) (5) (6)
#Rp90 -0.0027*** -0.0029**
(0.0007) (0.0007)
#Rp95 -0.0050"** -0.0046***
(0.0009) (0.0010)
#Rp99 -0.0096*** -0.0071***
(0.002) (0.002)
Observations 827,314 827,314 827,314 827,314 827,314 827,314
R2Adj 0.2146 0.2147 0.2146 0.2119 0.2120 0.2119
Municipality FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y
Student Controls Y Y Y Y Y Y

Note: In the first three columns, the dependent variable is the math score, and in the last three columns,
it is the language score. The independent variables are Rp90, Rp95, and Rp99, representing the number
of days in the school year with precipitation amounts exceeding the 90", 95t and 99" percentiles of the
municipality-specific distribution of precipitation on rainy days. All regressions include year, school, and
student-level controls. Standard errors are clustered at the municipality level. * p < 0.10, ** p < 0.05, ***
p < 0.01.

4.7
Conclusion

In this paper, we analyzed the short-term impact of extreme rainfall
events on student achievement in Southern Brazil, focusing on the perfor-
mance of 9th-grade students in standardized math and language exams. Our
identification strategy exploits within-municipality variations in extreme rain-
fall episodes across years, which, after controlling for school fixed effects, time
fixed effects, and school-level controls, can be plausibly considered exogenous.

Importantly, these disruptions are not uniform across all students. Vul-
nerable groups—such as non-white students, those from disadvantaged back-
grounds (with low-educated mothers and from poor families), and students
with lower academic performance—are disproportionately affected. These stu-
dents already face educational disadvantages, and rainfall shocks appear to
exacerbate these existing inequalities.

We show evidence that rainfall leads to school interruptions, likely
resulting in a loss of instructional time. We did not observe significant effects
on student absenteeism, teacher attendance, or the physical condition of
school infrastructure. However, since these measures are based on individuals’

perceptions, we cannot entirely rule out the importance of these channels.
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Robustness checks support the causal relationship between rainfall and
student outcomes. We show that future rainfall shocks do not affect current
test scores, reducing concerns regarding spurious correlations. We also find no
evidence of student selection bias related to rainfall events. Testing alternative
definitions of extreme rainfall based on municipality-specific historic precipi-
tation distribution yielded consistent results.

Overall, this study underscores the negative effects of extreme rainfall
on student performance in Southern Brazil. While our evidence suggests these
effects are transitory, with no lasting impact from past rainfall episodes, as
extreme weather becomes more frequent and intense, cumulative disruptions in
the education process may lead to more persistent and long-term deterioration

in academic achievement.



Appendix C

Asset Index

The asset index is constructed by standardizing responses to questions

about the number of household items, as described in the table below. For

each question, the student’s response is normalized by subtracting the average

response of all students in the same year and dividing the result by the standard

deviation of those responses. These standardized responses are then summed

to create the Asset Index. Students classified as "poor"are those in the bottom

20% of the distribution.

Tabela C.1: Student Survey: Household Assets

Item

Refrigerator No Yes, One
Freezer No Yes, One
Washing Machine No Yes, One
Car No Yes, One
Computer No Yes, One
Bathroom No Yes, One

Bedroom No Yes, One

Does Your House Have?

Yes, Two
Yes, Two
Yes, Two
Yes, Two
Yes, Two
Yes, Two
Yes, Two

Yes, Three
Yes, Three
Yes, Three
Yes, Three
Yes, Three
Yes, Three
Yes, Three

Yes, Four or more
Yes, Four or more
Yes, Four or more
Yes, Four or more
Yes, Four or more
Yes, Four or more
Yes, Four or more
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Tabela C.2: School Survey - Evaluation of Building Items and Equipment

Item Rate

1 Roof Good Regular Poor Noxistent

2 Walls Good Regular Poor Nonexistent
3 Floor Good Regular Poor Nonexistent
4 Building Entrance Good Regular Poor Nonexistent
5 Courtyard Good Regular Poor Nonexistent
6 Hallways Good Regular Poor Nonexistent
7  Classrooms Good Regular Poor Nonexistent
8 Doors Good Regular Poor Nonexistent
9 Windows Good Regular Poor Nonexistent
10 Bathrooms Good Regular Poor Nonexistent
11 Kitchen Good Regular Poor Nonexistent
12 Hydraulic Installations Good Regular Poor Nonexistent
13 Electrical Installations Good Regular Poor Nonexistent
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Additional Results

Tabela C.3: Impact of Extreme Rainfall on Language Scores

Dep Var: Language Scores

(1) 2 (3) (4) (5) (6)
R50 -0.0058***%  _0.0058***  -0.0035*  -0.0056*** -0.0056*** -0.0054***
(0.002)  (0.001)  (0.002)  (0.001)  (0.001)  (0.001)
Female 0.2283***
(0.008)
Female x R50 -0.0001
(0.002)
Non White -0.1027F**
(0.004)
Non White x R50 -0.0000
(0.001)
Low Educated Mother -0.1312%%*
(0.006)
Low Educated Mother x R50 -0.0042%*
(0.002)
Poor -0.0382%**
(0.007)
Poor x R50 -0.0036*
(0.002)
Previously Repeatedl -0.4393%+*
(0.009)
Previously Repeated x R50 -0.0006
(0.002)
Previously Dropped Out 0.0537***
(0.01)
Previously Dropped Out x R50 -0.0110%**
(0.004)
Observations 686838 827314 827314 827314 827314 827314
R? adj. 0.2075 0.2119 0.2119 0.2119 0.2119 0.2119
School FE Y Y Y Y Y Y
Year FE Y Y Y Y Y Y

Notes: This table investigate heterogeneity of extreme rainfall by students characteristic. Dependent Variable is language score.
Independent variable of interest is the number of days in the school year with precipitation exceeding 50mm/day. The sample size

varies across columns due to missing information on students characteristics. The standard errors are clustered at the municipality

level. Significance Levels: * denotes p < 0.10, ** denotes p < 0.05, and *** denotes p < 0.01.
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