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Abstract

The number of Covid-19 cases is increasing dramatically worldwide, with several coun-

tries experiencing a second and worse wave. Therefore, the availability of reliable forecasts

for the number of cases and deaths in the coming days is of fundamental importance. We

propose a simple statistical method for short-term real-time forecasting of the number of

Covid-19 cases and fatalities in countries that are latecomers � i.e., countries where cases

of the disease started to appear some time after others. In particular, we propose a pe-

nalized (LASSO) regression with an error correction mechanism to construct a model of

a latecomer in terms of the other countries that were at a similar stage of the pandemic

some days before. By tracking the number of cases in those countries, we forecast through

an adaptive rolling-window scheme the number of cases and deaths in the latecomer. We

apply this methodology to four di�erent countries: Brazil, Chile, Mexico, and Portugal.

We show that the methodology performs very well. These forecasts aim to foster a bet-

ter short-run management of the health system capacity and can be applied not only to

countries but to di�erent regions within a country, as well.
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1 Introduction

Being able to forecast accurately the number of Covid-19 cases and deaths in the very short-run,

say the next few days or weeks, is crucial to manage properly the health system. Depending on

the next days pressure on the health system capacity, one can make more informed decisions

on how to allocate hospital beds and ventilators, on whether to set more �eld hospitals, on

whether to train more health workers, and so on and so forth.

In this paper, we propose a statistical method to forecast in real-time the very short-run

evolution of the number of Covid-19 cases and deaths in countries that are latecomers. Given

that these latecomers were hit by the Covid-19 pandemic only after other countries, we can

use information from these other countries when they were at a similar stage of the pandemic,

a few days or weeks before. In particular, we propose a penalized Least Absolute Selection

and Shrinkage Operator (LASSO) regression proposed by Tibshirani (1996), to construct an

error correction model (ECM) of a latecomer in terms of the other countries. The idea behind

the ECM model is to adjust the short-run dynamics of the latecomer to departures from the

equilibrium between the latecomer country and its peers. By tracking the number of cases in

those countries, we can forecast the short-run number of cases in the latecomer. The forecasts

for the number of deaths are constructed as a linear regression on the number of cases. As the

pandemic evolves, one can run the model on a daily basis, and in a adaptive rolling window

scheme, to obtain updated forecasts for the next days. The model is easily estimated and

con�dence intervals can be computed in a straightforward manner by simulation techniques.

The rolling window (adaptive) scheme is important to acknowledge the dynamic nature of

the pandemic and to attenuate the e�ects of outliers and potential structural breaks (due to, for

example, more or less testing after a given period, policy changes, start of vaccination campaigns

in some countries, or changes in the relations between countries used as explanatory variables

and the latecomer). Nonetheless, it is important to emphasize that despite this attenuation,

one might expect a worsen of the forecasts a few days after a structural break as the model

adapts. Hence, and needless to say, the use of the proposed forecasting method should be

complemented with evaluations on how the pandemic is evolving.1

We apply the methodology to four di�erent countries: Brazil, Chile, Mexico, and Portugal.

We show that it has been performing very well in forecasting the out-of-sample number of cases

and deaths up to the next 14 days during the full year of 2020. The number of cases used

correspond to those that are detected by the health system, which is the proper measure to

track if the concern is to evaluate the impact on its capacity.

Tracking the evolution of the Covid-19 has been posing several challenges. The proposed

method overcomes some of them. First, standard epidemiological models used to track the

evolution of an epidemic are hard to discipline quantitatively to a new disease. Despite the

enormous e�ort worldwide to understand transmission, recovery and death rates, many pa-

1In the case of Brazil and other less developed countries, for example, the proposed method might not
anticipate the acceleration in cases and fatalities after the Covid-19 reaches areas with high urban density that
lack proper sanitation. But as the model adapts, we expect to get more reliable forecasts under this new stage
of the pandemic's evolution.
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rameters one needs to calibrate remain uncertain (Atkeson, 2020), and behavioral responses of

individuals as well as containment policies should a�ect these parameters (Eichenbaum, Rebelo,

and Trabandt, 2020).2 The proposed forecasting method, instead, has the advantage of being

model-free, and makes projections based solely on available data.

Second, even if possible to discipline those epidemiological models reliably, they speak to

the evolution of the infected population. From the perspective of managing health resources,

the relevant �gure is the number infected individuals that end up pressuring the health system.

Note that a lot of individuals who end up being infected are asymptomatic or do not need to

access the health system. Hence, the evolution of the virus among the sub-population that

actually needs health care, which possesses certain characteristics that di�er from the rest of

the population, might be di�erent from the evolution in the whole population. The proposed

method avoid this problem by forecasting directly the number of infected individuals who are

detected by the health system or speci�c parts of it that are of interest to be monitored, e.g.,

speci�c regions within a country.

Finally, alternative methods to track the evolution of the Covid-19, and forecast the pressure

on health resources, such as massive testing, are expensive and unavailable to many countries.

The methodology and our codes are immediately and cheaply reproducible to any latecomer that

tracks the number of Covid-19 cases (and deaths). Note also that the proposed methodology

can be as well applied to di�erent regions within a country. This is particularly useful in large

countries as Brazil, where the disease have hit distinct regions with delays.3

The aforementioned challenges are even harder to overcome in poor and developing coun-

tries, mostly latecomers, due to the lack of high-quality research, reliable data and limited

budget. By tracking the very short-run evolution of the number of Covid-19 cases (and deaths)

in real-time, we hope that this methodology can be useful to inform policymakers and the

general public. In the authors' point of view, an adaptive and accurate data-driven forecast

is critical to foster better management of the health system, especially in those countries that

lack proper resources.

1.1 Main Takeaways

The ECM method proposed in this paper provides forecasts for cases and deaths with lower

mean absolute percentage errors (MAPE) than a benchmark model. Namely, a simple quadratic

trend regression that has been shown to be quite precise for short-term forecasts of Covid

fatalities (Coroneo, Iacone, Paccagnini, and Monteiro, 2020).

According to the test of superior predictive ability put forward by Giacomini and White

(2006), the ECM model statistically outperforms the benchmark for most horizons considered.

2Epidemiologists and researchers from other �elds rushed to improve those models and provide simulations on
the spread of the disease, some of them taking into account counteracting policy and/or behavioral responses.
A very incomplete list includes Berger, Herkenho�, and Mongey (2020), Kucharski, Russell, Diamond, Liu,
Edmunds, Funk, Eggo, et al. (2020), Walker, Whittaker, Watson, et al. (2020), Wu, Leung, and Leung (2020),
and Bastos and Cajueiro (2020).

3We post on a daily basis updated forecasts for Brazil, methodology updates, and codes. The domain is
https://covid19analytics.com.br/, and one can check there for updates.
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Furthermore, the superiority of the ECM model is even more pronounced when we look at

fatalities. Our �ndings are very similar over the four countries considered.

More speci�cally, for Chile, the ECM delivers MAPEs for Covid-19 cases between 0.525% (1-

day-ahead) and 6.166% (14-days-ahead) while the benchmark's MAPEs range between 0.755%

and 6.188%. For Brazil, the ECM's MAPEs lie between 0.685% and 5.532%, whereas the ones

from the benchmark vary between 1.170% and 7.366%. For Mexico, our approach delivers

MAPEs ranging from 0.337% and 3.372% while the benchmark yields MAPEs between 0.582%

and 3.541%. Finally, for the case of Portugal, the MAPEs are 0.336% versus 0.973% for one-

steap ahead and 6.107% versus 8.236% for 14-steps ahead.

Now, turning to deaths, the di�erences are even more evident. In the case of Chile, our pro-

posed model delivers MAPEs as low as 1.192% for one-day-ahead forecasts as apposed to 2.514%

from the benchmark alternative. For 14-steps ahead, the MAPE from the ECM approach is

9.704% and the one from the benchmark is 18.472%. For Brazil, the MAPEs for one-step-ahead

are 0.739% (ECM) and 1.302% (benchmark). For 14-days-ahead the �gures are 5.854% (ECM)

and 7.629% (benchmark). For Mexico, the ECM MAPEs range from 0.957% (one-day-ahead)

to 4.385% (14-days-ahead), whereas the benchmark model provides MAPEs between 1.062%

(one-day-ahead) and 5.541% (14-days-ahead). Finally, for Portugal, the MAPEs are 0.376%

(ECM) versus 1% (benchmark) for one-day-ahead and 3.921% (ECM) and 8.219% (benchmark)

for 14-days-ahead.

It is important to highlight that as the pandemic evolves, the performance of the ECM

method improves and the MAPEs decrease substantially. Finally, due to the rolling window

scheme adopted in this paper, the model is able to rapidly adapt to new scenarios without the

need of any change in its structure.

1.2 Comparison to the Literature

Since the outbreak of the Covid-19 pandemic, a large number of papers dealing with short-

term forecasts of cases and deaths counts has been published in a wide collection of academic

journals. The models range from di�erent versions of epidemiological compartmental models

to pure statistical and machine learning approaches. The models can be as simple as a pure

trend regression or as complicated as deep learning neural networks. Nevertheless, a number of

studies provide strong evidence that is quite di�cult to beat the simplest alternatives. Our ap-

proach keeps the simplicity of several statistical models, explores equilibrium relations between

a latecomer country and its peers, and shows robustness against many breaks in the dynamics

of the series over the year of 2020.

Coroneo, Iacone, Paccagnini, and Monteiro (2020) compare the predictive accuracy of fore-

casts for the number of fatalities produced by several forecasting teams and collected by the

United States Center for Disease Control and Prevention (CDC) and a simple benchmark alter-

native. The set of models include both statistical (dynamic growth model) and compartmental

approaches (di�erent versions of SEIRD models). The authors �nd that a simple quadratic

trend regression outperforms all the alternatives for horizons up to one week ahead. For longer
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horizons, some of the models sometimes outperform the simple benchmark. However, the au-

thors show that the ensemble of models outperform all the other alternatives. Similar quadratic

trend models are also considered with some adjustments by Jiang, Zhao, and Sha (2020) and Li

and Linton (2021). Due to the previous satisfactory performance of the quadratic trend model,

we also adopt it as a benchmark speci�cation in this paper.

Hendry (2020) consider a �exible trend model and apply it to forecast con�rmed cases and

deaths in a large number of countries. As ours, their model has no epidemiological component.

For con�rmed cases, the authors report MAPEs between 0.4% and 2.1% for one-day-ahead and

from 1.7% to 7.6% for four-days-ahead. In the case of death counts, the MAPEs are higher.

Although not directly compared to our MAPEs, as we are not analysing the same countries,

the MAPEs reported here are lower than the ones in the above mentioned paper. See also

Petropoulos, Makridakis, and Stylianou (2020) for a similar approach to Hendry (2020).

Nonlinear machine learning methods such as, Long Short-Term Memory and Deep Neural

Networks, Random Forests and Support Vector Machines, have also been considered to forecast

cases and death counts in the short-run. For example, Ribeiro, da Silva, Mariani, and Coelho

(2020) estimate a vast amount of statistical and machine learning methods to forecast future

cases in Brazil. Not only their models are much more complex than the ones considered here,

but their MAPEs range between 0.87%�3.51%, 1.02%�5.63%, and 0.95%�6.90% for one, three,

and six-days-ahead forecasts, respectively. These numbers are systematically larger than the

MAPEs from our ECM speci�cation. Other examples of application of nonlinear machine

learning models are Zeroual, Harrou, Dairi, and Sun (2020), Chimmula and Zhang (2020), and

da Silva, Ribeiro, Mariani, and Coelho (2020), among many others.4

1.3 Organization of the Paper

In addition to this Introduction, this paper is organized as follows. Section 2 presents the

methodology. Section 3 gives some guidance to practitioners. Section 4 describes the results.

Finally, Section 5 concludes.

2 Methodology

Let τ = 1, 2, . . . , T , represents the number of days after the 100th con�rmed case of Covid-19

in a given country/region. De�ne yτ as the natural logarithm of the number of con�rmed cases

τ days after the 100th case of the disease in this speci�c country/region. In addition, let xτ be

a vector containing the natural logarithm of the number of reported cases for p other countries

also τ days after the 100th case has been reported and a quadratic trend, i.e, xτ also includes τ

and τ 2. The idea is that, in the regular time scale, xτ may be ahead of time of yτ . For example,

in France and Spain, the 100th was reported on February 29 and March 2, respectively. On the

other hand, in Brazil, a latecomer, the 100th case was con�rmed only on March 14. Therefore,

4None of these papers provide convincing evidence of the superiority of complicated machine learning models
to simpler alternatives.
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the idea is to use, for instance, data from France on February 29 and Spain on March 2 to

explain the number of cases in Brazil on March 14. Note that we do not claim any causal link

between the p countries and the latecomers. Our proposal explores the fact the evolution of

the disease in di�erent countries share similar patterns.5

The statistical approach considered in this paper is a simple error correction model (ECM)

which maps xτ into yτ as:

∆yτ = ∆x′
τπ + γ

(
yτ−1 − x′τ−1β

)
+ uτ , (2.1)

where uτ is zero-mean random noise with variance σ2, ∆yτ = yτ − yτ−1, ∆xτ = xτ − xτ−1,
and π, γ, and β are unknown parameters to be estimated. As can be seen in Figure 1, the

number of cases in τ -scale in di�erent countries display a strong common exponential trend.

The logarithm transformation is important to turn the exponential trend into a linear one.

The model is estimated in two steps. In the �rst step, we estimate β in a long-run equilib-

rium model:

yτ = x′τβ + ετ , (2.2)

where ετ is a zero-mean second-order stationary error term.

Due to the limited amount of data and the large dimension of xt as compared to the sample

size, we use the least absolute and shrinkage operator (LASSO) to recover the parameter vector.

The goal of the LASSO is to balance the trade-o� between bias and variance and is a useful

tool to select the relevant peers in an environment with very few data points. Therefore, the

estimator of the unknown parameter βT in equation (2.2) is de�ned as:

β̂T = argmin
β

[
1

K

T∑
τ=T −K+1

(yτ − x′τβ)
2

+ λ

p∑
j=1

|βj|

]
, (2.3)

where K is the number of days in the estimation window, and λ > 0 is the penalty parameter.

Theoretical justi�cation for the use of LASSO to estimate the parameters in this setup with

trends can be found in Masini and Medeiros (2019).

Once we estimated equation (2.2), we proceed to a second step estimating the ECM by

Ordinary Least Squares (OLS) with the variables selected in the �rst step with the LASSO.

The �nal prediction h�step ahead from T reads as:

ŷT +h = ∆x′T +hπ̂T − γ̂T x′T +h−1β̂T + (1 + γ̂T ) ŷT +h−1, (2.4)

where ŷT +h−1 is the forecast for the previous day. Con�dence intervals were obtained through

simulation by assuming that the error term uτ in (2.1) is normally distributed.

The intuition behind the proposed ECM is to model the dynamics and the reactions to

departs from the equilibrium between yτ and xτ : the disease behaves somehow in a similar

5These similarities are also explored in compartmental models. See also, Carroll, Bhattacharjee, Chen1,
Dubey, Fan, Gajardo, Zhou, Müller, and Wang (2020).
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fashion in di�erent countries. Note that we do not claim a causal link, for instance, from the

cases in Germany to the cases in Brazil due to mobility among these two countries. What the

model explores is that the evolution of diseases like Covid-19 seems to share similar patterns in

di�erent locations. Furthermore, as the �rst-stage LASSO regression is a model selection tool,

if our hypothesis of common dynamics among countries is not valid, the LASSO will not select

any country to explain the latecomer behavior and/or the residuals of the �rst stage LASSO

regression present statistical evidence of non-stationarity.

Our interest relies on the forecasts for number of cases in levels not in logs: Yτ := exp(yτ ).

Therefore, for the horizon T + h, the forecasts are constructed as:

ŶT +h = α̂T e
ŷT +h , (2.5)

where α̂T = 1
K

∑T
τ=T −K+1 exp(ûτ ) := 1

K

∑T
τ=T −K+1 exp (yτ − ŷτ ) is a correction which is essen-

tial to attenuate the induced bias when we take the exponential of the forecasted value of yT +h;

see Wooldridge (2019). Note that, in the τ -scale, the peers are �in the future� and we can

plug-in actual values of xT +h to construct our forecasts. Note also that a rolling estimation

window of K = 28 days induce an adaptive forecasting framework suitable to capture the dy-

namic nature of the pandemic and to attenuate the e�ects of outliers and potential structural

breaks. Finally, in order to give more weight to the newest observations, we in�ated the data

by repeating the last four observations where the last observation is repeated four times with

a linear decay for the observations before.

It is worth emphasizing that this model is only a local approximation of a more complex

and dynamic process. Therefore, its best use relies on fresh and updated data, and the rolling

window scheme takes care of that. Although the model has been providing to have excellent

adherence, the proposed forecasting method may be complemented with indexes, such as proxies

for social distancing, to guide evaluation of the future dynamics a�ecting the number of cases

and deaths. However, the inclusion of other regressors such as Google mobility has not showed

to improve the quality of the forecasts.

3 Guide to Practice

The implementation of the proposed forecasting method requires the choice of three tuning pa-

rameters: the penalty term in the �rst-stage LASSO regression (λ), the length of the estimation

window (K) and the data in�ation mechanism.

The penalty term is selected by the Bayesian Information Criterion (BIC) as discussed in

Medeiros and Mendes (2016). The degrees of freedom of the LASSO are determined by the

nonzero estimated coe�cients. Cross-validation can be also used to determine the penalty

parameters. However, we prefer the BIC in order to avoid any extra computational burden.

The estimation window length (K) and the in�ation scheme for the most recent observations

can be estimated in a rolling window process. Before computing the actual forecasts, one could

select these tuning parameters from a rolling window using previous data and selecting the

7



values that minimize the out-of-sample error measure (MAPE for example). However, this

procedure gives us the best model for past data, especially because we need a signi�cant number

of windows that go back several weeks to obtain stable estimates. Although a procedure like

this could lead to some local improvements, it could also lead to situations where the forecast

explodes, especially when a very smallK is selected with no data in�ation. To avoid unnecessary

data mining that could lead to unreliable results, we choose to use a �xed value of K = 28

and the in�ation scheme for the four most recent lags. We understand that this sample size is

enough to get a satisfactory model given the number of variables and it is not too big to include

many structural breaks. The in�ation scheme is just to give more weight to the most recent

data, which is likely to be more similar to future data in the short-run. Small changes in the

in�ation strategy do not a�ect the overall results. However, no in�ation yields higher errors.

Another important point is to check if the �rst-stage errors are stationary. This can be

conducted by common unit-root tests. If the null hypothesis of unit-root is not rejected, the

�rst stage is clearly misspeci�ed and the forecasts will not be reliable. In this paper, we run

unit-root tests after every LASSO estimation and there is no evidence of misspeci�cation.

Finally, the ECM methodology proposed here is �exible enough to include other regressors,

such as, for example, mobility data. However, in our experience the inclusion of such data did

not bring any evident improvement in the performance of the model.

4 Results

4.1 Data and Results

We used the John Hopkins compiled data6 for all countries with Covid-19 cases and the Brazilian

Ministry of Health o�cial data.7. The data are organized in epidemiological time, i.e., the time

dimension represents the number of days after the 100th case.

The models were computed on a rolling window scheme with 28 in-sample observations per

window. For each country, the model estimation started when the number of con�rmed cases

of Covid-19 reached 20,000. The last in-sample day for every country was December 17, 2020,

which makes December 31, 2020 the day of the last out-of-sample forecast. The start date

for each country was May 2nd for Chile, April 11th for Brazil, May 1st for Mexico and April

19th for Portugal. As described in Section 3, we setting the window length to 28 days turned

out to be a good trade-o� between the quality of the in-sample adjustment and robustness to

potential structural breaks.

Figure 1 illustrates the evolution of Covid-19 cases in several countries. The data is displayed

in epidemiological time, i.e., the x-axis represents the number of days since the �rst registered

case. It is clear from the �gure that some countries are ahead of epidemiological time than

others.

6John Hopkins data available at https://github.com/CSSEGISandData/COVID-19
7Brazilian Ministry of Health data available at https://covid.saude.gov.br/
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4.2 Forecasting results

4.2.1 Mean Absolute Percentage Errors

In other to compare the performance of the ECM model proposed in this paper we consider

the benchmark model as described in Coroneo, Iacone, Paccagnini, and Monteiro (2020). The

model is a simple quadratic trend regression de�ned as:

yτ = α0 + α1τ + α2τ
2 + ετ , (4.1)

where ετ is a zero-mean error term. As mentioned before, although this bechmark is amazingly

simple, it proved to be quite precise for short-term forecasts.

Tables 1 and 2 present the forecasting results for the full out-of-sample period. The tables

show the MAPE for forecasting horizons of 1 to 14 days ahead of the Covid-19 accumulated

number of cases (Table 1) and deaths (Table 2). Values in parenthesis are p-values for the

Giacomini & White test for superior predictive ability (Giacomini and White, 2006). The null

hypothesis of the test is that both forecasts have the same MAPE.

We start by comparing the models with respect to the forecasts for case counts. For Chile,

the ECM overperforms the benchmark in 11 out of 14 horizons. However, the di�erences

are statistically signi�cant only for one-day-ahead. For Brazil, the results are much more

favorable to the ECM model as it has lower MAPEs than the benchmark for all horizons and

the di�erences are all signi�cant. For Mexico, the ECM is also superior to the benchmark for

all horizons, but the di�erences are signi�cant in seven out 14 cases. Finally, for Portugal, the

benchmark performs poorly for all horizons. The di�erences in performance of the ECM and

the benchmark are statistically di�erent in all horizons up to 12-days-ahead.

Turning the attention now to fatalities, the ECM model is clearly superior to the benchmark

and the di�erences are much more pronounced. For Chile, Brazil, and Portugal the ECM is

better than the benchmark for all horizons and the di�erences are all statistically signi�cant.

For Mexico, the ECM overperforms the benchmark in 13 out of 14 horizons, and for all horizons

greater than four-days-ahead the di�erences are statistically signi�cant.

In order to analyze how the errors unfold over the evolution of the pandemic, we plot rolling

MAPEs over 14 days in Figures 2�5 for cases forecasts and in Figures 6�9 for deaths. We report

only results for selected horizons. It is clear from the �gures, that both models improve over

time. In some cases the reductions be larger than 50%. For Chile, the gains of the ECM over

the benchmark are more evident during the months of July and August when we look to cases.

On the other hand, for deaths, the ECM is better than the benchmark for all windows. In case

of Brazil, the superiority of the ECM forecasts for cases are more concentrated in the beginning

of the sample, when the benchmark performs very poorly. A similar pattern is visible in the case

of deaths. In the case of Mexico and for forecasts for case counts, the ECM is systematically

superior to the benchmark over the sample and when we consider the one-day-ahead forecasts.

For the other horizons, the gains are more concentrated in the beginning and in the end of the

sample. Equivalent conclusions emerge when we look at the forecasts for deaths. In the case of
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Portugal, the bene�ts of using the ECM instead of the benchmark are clearer during the �rst

half of the sample.

In order to complement the analysis and to reconcile the results presented in Tables 1 and

2 and in Figures 2�9, we compute the frequency of days when the ECM has a lower absolute

percentage error than the benchmark and the median of the ratio of the daily absolute errors

of the ECM and benchmark speci�cation over the forecasting sample. Figures 10�13 report,

for each forecasting horizon, the frequency of days over the sample when the daily absolute

percentage error of the ECM is smaller than the one from the benchmark alternative. The upper

panel in the �gures present the results for cases whereas the lower panel shows the numbers

of deaths. To quantify these gains, Figures 14�17 present, for each horizon, the median of the

ratios of the daily absolute errors. A number less than one favors the ECM model. As before,

the upper (lower) panels concern cases (deaths). We prefer the use the median instead of the

mean to avoid potential e�ects of outliers.

For Chile, the one-day-ahead forecasts of ECM are the best ones in 72.17% (61.75%) of

the days when cases (deaths) are considered. These numbers drop to 46.52% (53.91%) one the

forecasting horizon is set to 14 days. For almost all the horizons the proportion of days when

the ECM is better than the benchmark is larger than 50%. From the analysis of the results in

Figure 14, it is clear that the ECM is better than the benchmark for almost all horizons when

cases are considered. When fatalities are analyzed, the ECM is always superior.

For Brazil, the results are less favourable to the ECM. Both Figures 11 and 15 point to the

superiority of the benchmark. However, when looking at the results in Tables 1 and 2 above,

we may reach a di�erent conclusion. Therefore, it is important to uncover the drivers to the

best MAPE of the ECM over the entire out-of-sample period. The reason for this �nding is

that the ECM is way superior to the benchmark during the �rst 100 days of the sample. This

was the period when the number of cases and deaths in Brazil was accelerating the most.

For Mexico, the results are very supportive to the ECM speci�cation. The ECM is superior

to the benchmark in more than 50% of the days in almost every case considered in the analysis.

The median ratios of the absolute percentage errors are always bellow one, when Covid-19 cases

are considered. For deaths, the ratios are bellow one for horizons larger than four-days-ahead.

Finally, for Portugal, the superiority of the ECM draws attention. For all horizons consid-

ered, the ECM is better than the benchmark in terms of number of days with lower errors as

well as in terms of the relative magnitude of the absolute percentage errors.

4.2.2 Diagnostic Tests

We report two diagnostic tests. First, Figure 18 illustrates the empirical distribution of the

estimated coe�cient of a �rst-order autoregressive, AR(1), model estimated with the residuals

from the �rst-stage LASSO regression. The distribution is over all the rolling windows and

each one of the four countries analyzed in this paper. It is clear from the �gure that apart from

a single case, all the estimates are bellow one in absolute value. Unit-root tests also strongly

reject the null of unit roots in all but one case. This speci�c negative case is related to a huge

10



outlier in the data which distort the estimation of the AR coe�cient and, consequently, the

unit-root test. Based on this analyze we are quite con�dent that out methodology is adequate

for the present data.

The second diagnostic is related to the data in�ation heuristic. Table 4 presents the MAPEs

of the ECM with data in�ation divided by the MAPEs of the ECM without data in�ation.

Numbers lower than one favors the in�ation heuristic. For Brazil, Chile, and Portugal, it is

clear that data in�ation is superior to no in�ation at all. For Mexico, we see improvements when

the forecasts for cases are considered but not deaths. Changing the number of observations to

in�ate seems to have no signi�cant e�ect and these extra results can be obtained upon request.

4.2.3 Variable Selection

Finally, it is important to understand which variables are being selected by the LASSO during

the �rst stage of the methodology. Table 3 shows the frequency of selection of each variable

over the rolling windows. Mexico is the latecomer country where each variable in the pool is

selected at least once. Portugal seems to be the country with the most parsimonious model.

Note also the frequency of selection of each variable di�ers from country to country.

5 Conclusion

In this paper, we propose a statistical model to forecast in the very short-run the reported

number of cases and deaths by the Covid-19 in countries/regions that are latecomers. We be-

lieve this is a useful tool to inform health management. Nonetheless, structural breaks might

worsen forecasts a few days after such breaks. So the use of this tool should complemented

with other external information, such as proxies for social distancing, to guide subjective or

objective assessments on potential dynamic changes on the pandemic's evolution. We hope

to keep improving the model by improving the methodology and incorporating more infor-

mation. And we aim to keep forecasts, methodology and codes updated on a daily basis at

https://covid19analytics.com.br/.
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Figure 1: Evolution of cases in di�erent countries in epidemic time.
The �gure illustrates the evolution of the cases of Covid-19 in di�erent countries according to the epidemic

calendar, i.e., the x-axis represents days from the �rst con�rmed case of Covid-19. It is clear that come

countries are in front of others in epidemic time.
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Figure 2: Cases Rolling Mean absolute percentage error - Chile.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 3: Cases Rolling Mean absolute percentage error - Brazil.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 4: Cases Rolling Mean absolute percentage error - Mexico.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 5: Cases Rolling Mean absolute percentage error - Portugal.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 6: Deaths Rolling Mean absolute percentage error - Chile.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 7: Deaths Rolling Mean absolute percentage error - Brazil.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 8: Deaths Rolling Mean absolute percentage error - Mexico.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 9: Deaths Rolling Mean absolute percentage error - Portugal.
The �gure illustrates, for di�erent horizons, the Mean Absolute Percentage Error (MAPE) computed over rolling

windows with 14 observations.
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Figure 10: Chile: Frequency of days when ECM is better than the benchmark
The �gure illustrates for Chile and for di�erent horizons, the frequency of days when the absolute percentage

error of the ECM is smaller than the one from the benchmark speci�cation. Upper panel refers to cases. Lowe

panel refers to deaths.
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Figure 11: Brazil: Frequency of days when ECM is better than the benchmark
The �gure illustrates for Brazil and for di�erent horizons, the frequency of days when the absolute percentage

error of the ECM is smaller than the one from the benchmark speci�cation. Upper panel refers to cases. Lowe

panel refers to deaths.
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Figure 12: Mexico: Frequency of days when ECM is better than the benchmark
The �gure illustrates for Mexico and for di�erent horizons, the frequency of days when the absolute percentage

error of the ECM is smaller than the one from the benchmark speci�cation. Upper panel refers to cases. Lowe

panel refers to deaths.
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Portugal
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Figure 13: Portugal: Frequency of days when ECM is better than the benchmark
The �gure illustrates for Portugal and for di�erent horizons, the frequency of days when the absolute percentage

error of the ECM is smaller than the one from the benchmark speci�cation. Upper panel refers to cases. Lowe

panel refers to deaths.
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Figure 14: Chile: Median percentage error ratios
The �gure illustrates for Chile and for di�erent horizons, the median of the daily rations between the absolute

percentage error of the ECM and the benchmark speci�cations. Upper panel refers to cases. Lowe panel refers

to deaths. Numbers less than one favors the ECM model.
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Figure 15: Brazil: Median percentage error ratios
The �gure illustrates for Brazil and for di�erent horizons, the median of the daily rations between the absolute

percentage error of the ECM and the benchmark speci�cations. Upper panel refers to cases. Lowe panel refers

to deaths. Numbers less than one favors the ECM model.
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Figure 16: Mexico: Median percentage error ratios
The �gure illustrates for Mexico and for di�erent horizons, the median of the daily rations between the absolute

percentage error of the ECM and the benchmark speci�cations. Upper panel refers to cases. Lowe panel refers

to deaths. Numbers less than one favors the ECM model.
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Portugal
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Figure 17: Portugal: Median percentage error ratios
The �gure illustrates for Portugal and for di�erent horizons, the median of the daily rations between the absolute

percentage error of the ECM and the benchmark speci�cations. Upper panel refers to cases. Lowe panel refers

to deaths. Numbers less than one favors the ECM model.
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Figure 18: First-stage Residual AR Coe�cients
The �gure illustrates the empirical distribution of the estimated AR coe�cients of an AR(1) model estimated

with the residuals of the �rst-stage LASSO regression.

Table 4: E�ects of data in�ation.

Forecasting MAPEs of the ECM with data in�ation divided by the forecasting MAPEs of the ECM without

data in�ation. Numbers lower than one favors the in�ation heuristic.

Country
Brazil Chile Mexico Portugal

horizon cases deaths cases deaths cases deaths cases deaths
1 0.868 1.040 0.828 0.942 0.915 1.009 0.807 0.880
2 0.950 0.999 0.899 0.912 0.971 1.036 0.814 0.833
3 0.971 0.964 0.847 0.915 0.989 1.044 0.834 0.820
4 0.944 0.925 0.828 0.914 0.989 1.066 0.860 0.822
5 0.907 0.889 0.827 0.915 0.974 1.083 0.873 0.852
6 0.870 0.854 0.817 0.925 0.946 1.052 0.878 0.865
7 0.857 0.840 0.818 0.922 0.948 1.051 0.883 0.875
8 0.859 0.825 0.834 0.922 0.959 1.054 0.892 0.873
9 0.849 0.827 0.842 0.925 0.966 1.052 0.900 0.861
10 0.854 0.825 0.848 0.929 0.974 1.060 0.916 0.855
11 0.866 0.820 0.852 0.927 0.992 1.064 0.932 0.862
12 0.864 0.811 0.850 0.931 0.991 1.056 0.947 0.872
13 0.865 0.811 0.844 0.929 1.001 1.056 0.958 0.878
14 0.860 0.813 0.837 0.941 0.983 1.050 0.970 0.882
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