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Abstract

Silva, Matheus de Barros Santa Lucci e; Carvalho, Carlos Viana
de (Advisor). Demographics and the Fisher Effect in the
Nineteenth Century. Rio de Janeiro, 2017. 51p. Dissertação de
Mestrado – Departamento de Economia, Pontifícia Universidade
Católica do Rio de Janeiro.

There is little response of nominal interest rates to inflationary move-
ments in the second half of the Nineteenth Century, while the Fisher equa-
tion would predict a one-to-one relation between these economic variables.
Most of the previous answers to this observation rely on some sort of irra-
tionality argument (Fisher (1906), Friedman and Schwartz (1982), Summers
(1983) and Barsky and De Long (1991) are some examples) or state that
there are problems in the data used (Perez and Siegler (2003)). In this the-
sis, I argue that this is not due to agent irrationality, but to the lowering of
the equilibrium interest rate level as a response to a demographic transition
attributed to advances in medical science and enhancements in sanitation
infrastructure. I build an stylized overlapping generations model based on
Gertler (1999) that captures the main features of the American Economy
during this period, then calibrate it and conduct experiments to show that
Barsky and De Long’s (1991) "strike" on the Fisher Effect does not hold
when the demographic channel is turned off.

Keywords
Demographic transition; Equilibrium interest rates; Macroeconomics;

Aging;



Resumo

Silva, Matheus de Barros Santa Lucci e; Carvalho, Carlos Viana de.
Demografia e Efeito Fisher no Século XIX. Rio de Janeiro,
2017. 51p. Dissertação de Mestrado – Departamento de Economia,
Pontifícia Universidade Católica do Rio de Janeiro.

Há pouca resposta das taxas nominais de juros ao movimentos da
inflação na segunda metade do Século XIX, enquanto a equação de Fisher
prevê uma relação de um para um da taxa nominal de juros à inflação. A
maior parte das respostas a essa observação dependem, de algum jeito, de
argumentos sobre a irracionalidade dos agentes econômicos (Fisher (1906),
Friedman e Schwartz (1982), Summers (1983) e Barsky e De Long (1991),
por exemplo), ou argumentam que os dados desse período são falhos (Perez e
Siegler (2003)). Nessa dissertação, eu argumento que a taxa de juros nominal
não aumentou o quanto deveria não por irracionalidade dos agentes, mas
sim porque a taxa natural de juros abaixou como resposta a uma transição
demográfica nesse período, atribuída às melhoras na infraestrutura de saúde
pública e a avanços na ciência médica. Eu construo um modelo de gerações
imbricadas estilizado com base em Gertler (1999) que captura algumas
das principais características da economia americana desse período. Então,
calibro-o e conduzo experimentos demográficos para mostrar que o principal
argumento de Barsky e De Long (1991) contra o efeito Fisher não prossegue
caso se cancelem os efeitos da transição demográfica.

Palavras-chave
Transição demográfica; Taxas de juros de equilíbrio; Macroeconomia;

Envelhecimento;
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1
Introduction

During the second half of the Nineteenth Century, the discovery of new
gold mines and the enhancement of mining technologies made the world gold
supply grow at rates previously seen during the Gold Rush. Under the classical
Gold Standard, this means the monetary stock and the price level grew at a
very fast pace. The following graph shows how much the monetary stock and
the price levels grew.
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Figure 1.1: Price level and monetary gold stock growth. Source: Gold Council,
Friedman and Schwartz (1982)

Despite the positive inflation after 1896, there is little response of the
nominal interest rates. This is unexpected if one is to take the predction that
the nominal interest rate should raise one-to-one with inflation, as stated by the
Fisher equation. Figure 1.2 presents the relatively stable path of the nominal
interest rate during this period.

There are two main explanations for this unresponsiveness: it is either
caused by some sort of irrationality, or by problems in the data used. The first
point has been made differently by many authors: Fisher (1906) argues that
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Figure 1.2: Nominal interest rate. Source: Macaulay (1938)

the gold boom must have "caught merchants innatent"; Friedman and Schwartz
(1982) state that this is due to agents lagging in forming their expectations;
Summers (1983) argues that agents suffered from monetary illusion; Barsky
and DeLong (1991) argue that this is due to agents not being certain about
the model used to analyse the economic variables. On the other hand, Perez
and Siegler (2003) create a new price index with previously neglected data and
show that the nominal interest rates are correlated with the expected inflation
of this new price index.

In this paper, I present another explanation for the unresponsiveness
of the interest rates: the demograhic changes during this period made the
equilibrium real interest rate drop enough to make the nominal interest rate
relatively stable during the high inflation period.

I conduct my analysis using a stylised life cycle monetary economy model
built on Gertler (1999) and calibrated to the American economy over the
second half of the nineteenth century up to the World War I. Other papers that
use models similar to this one are Favero (2010), Carvalho and Ferrero (2014),
Carvalho, Ferrero and Nechio (2016) and Kara and Von Thadden (2016).
I dialog directly with Barsky and DeLong (1991) by running instrumental
variables regressions and showing that the Fisher Effect hold (that is, the
nominal interest rates respond to the liquidity shocks as expected) when I
turn off the demographical mechanisms.

I’m dividing this paper into four other chapters beyond this Introduction.
Chapter 2 presents evidences of demographic changes in the second half of
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the Nineteenth Century United States. I present the model in Chapters 3.
Chapter 4 is devoted to presenting the calibration strategy, its results and the
conclusions from the model experiments. Finally, Chapter 5 summarizes and
concludes this paper. The Appendix presents the model derivation in depth.



2
Demographic Changes in the Nineteenth Century United
States

I put emphasys on two demographic movements that happened during
the second half of the Nineteenth Century. These are the lengthening of the
average life span and the increase in the retirement period.

From 1850 to 1920, the average life duration went from 46.35 to 59.60
years (Lee, 2007). These extra years were possible due to governmental
measures concerning public health and to advances in Medical Science. The
reader will notice that it does not matter in the model I present where these
improvements come from, so I abstain from diving deeper into discussions on
whether advances in knowledge or the improvements in public health were the
most significant to the increase in life expectations (McKeown, 1976).

Lemuel Shattuck is one of the biggest names in governmental interference
in public health. In the beginning of 1840, he instituted the first recording
system for births, marriages and deaths in the state of Massachusetts. Later
in the decade, Shattuck et al (1849) present an extense survey on the sanitary
conditions of Massachusetts’ counties and end up by proposing fifty measures
to improve them, ranging from teaching basic sanitary science to parents to
the removal of inhabitants living in overcrowded lodging-houses and cellar-
dwellings.

The construction of central water distribution systems has also become
a priority in some cities. Urban areas also tended to have very low life quality
standards, due to being densely inhabited and poverty-stricken; therefore,
the creation of these distribution systems implied rapid decline of infectious
diseases and mortality. The most iconic example is Chicago: in 1855, the city’s
Board of Sewerage Commissioners ordered the raise of the street level. Over
the next decades, the city has been literally lifted out of the Lake Michigan
level, lowering the number of water overflows in the city and the number of
waterborne diseases.

The contributions of the advances in Medical Science come from two
fronts, the first one being the theories on the origin of the diseases. Pasteur
proposed and presented convincing evidence of the Germ Theory in the first
years of the 1860s. Over the subsequent decades, the theory was improved
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and advanced by the work of Koch and others and began to be accepted by a
then very conservative medical profession. Another important work is Budd’s
(1873) treatise on typhoid fever, which has led doctors and scientists to accept
diseases could be transmitted by contagion1.

Besides these theoretical contributions on the origin of the diseases,
vaccines and new techniques were created and improved. Even though the first
vaccine was invented in the end of the Eighteenth Century, it took almost 100
years until new vaccines appeared. In 1879, Pasteur created the cholera vaccine
by weakening its bacteria and injecting them in chicken. In 1885, Pasteur saved
the life of a boy infected by rabies by applying a series of 13 shots of weakened
rabies virus. The vaccines for tetanus, typhoid fever and the bubonic plague
came soon after. Another important new procedure is the laryx intubation. It
was invented in during the 1880s and improved in 1888, this later version of
the procedure was quickly adopted by doctors worldwide, saving many lifes
that would have been previously threated by diseases that inflict damage or
completely close the respiratory ways.

Figure 2.1 presents the death rates (per 100,000) of different diseases
in Massachusetts2 over the period of interest. There is an overall decline in
the mortality rates of diseases caused by bacteria and viruses, despite a few
sporadic outbreaks. There are two features of this data that are worth noticing.
The first one is the great fall in tuberculosis’ death rate. Tuberculosis is an
airborne disease whose vaccine was only invented after World War I, its decline
is therefore attributed to general improvements in sanitary conditions. The
second important feature of this data is the increase steady increase in cancer3

death rates.Since cancer is typically associated with the elderly (Doll, 1971),
this is another evidence of the American population getting older.

1Reviews and notices. BMJ 1874;ii: 835-8. Commenting on Typhoid Fever: Its Nature,
Mode Of Spreading, And Prevention. By William Budd, MD FRS. London: Longmans,
Green, and Co, 1873

2Massachussets isn’t representative of the other states because it has a much higher
urbanization rate and income than the rest of the states. It’s worth remembering that in
this period cities were the home of the poor, and this is correlated to bad sanitary, alimentary
and working conditions

3Under the broad label of ’Malignant neoplasms’
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Newspapers citations provide some anedoctal evidence of the increased
concerns about public health issues. Figure 2.2 presents citations of selected
words related to these topics in newspapers extracted from Elephind, a free-
to-access historical newspaper search engine that searches over 2,500,000 his-
torical American newspapers. The usage of the word "epidemic", for example,
grew quickly after the 1870s, and "mortality"exhibited a steady growth th-
roughout the whole period. The timing of these increases follow closely those
of the medical discoveries and improvements.
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Figure 2.2: Newspaper citations of selected words. Source: Elephind

All this previous evidence is backed by Censuses data. Haines (1994)
constructed the life tables for the United States based on the Census held
decenially and, based on his estimates, I constructed the following year-of-
birth cohort age-t radix presented in Figure 2.3. This measure shows how
many individuals (out of a standardized initial population of 100,000) survive
throughout the years. For illustration purposes, the starting age is set to 10.
The outwards movements in the function reflects the increase in life span, since
it means that more people are surviving between periods. Table 2.1 presents
the average life lenght, as estimated by Lee (2007).
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Figure 2.3: Cohort radix function. Source: Own calculations, data comes from
Haines (1994)

Estimate
1850 46.35
1860 47.11
1870 47.53
1880 49.78
1890 51.28
1900 52.79
1910 55.81
1920 59.60

Source: Lee (2007)

The next question is: "how are these extra years of life distributed between
work and retirement?"This is a fundamental point in the model because it
dictates whether individuals will save more for retirement or less. At first
glance, one could expect agents would simply work more until death. Ransom
and Sutch (1986) argue that even though this assumption is common in the
Economic History literature, retirement in the second half of the nineteenth
century exists and is significant. Lee (2007) provides numerical estimates for
these movements inside cohorts. His estimates point that both working and
retirement time increased during this period, with retirement time increasing
relatively more than the increase in working time for 20 year old individuals.
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Figure 2.4: Estimated length of work and retirement. Source: Lee (2007)



3
Model

I build the model on Gertler’s (1999) overlapping generations model.
The setup includes two economic actors: individuals and firms. There are two
types of individuals: workers (who inelastically supply one unit of labor at every
period), and retirees (who can only consume out of their assets). All individuals
are born workers and deprived of capital. At the beginning of every period a
worker faces the probability 1 − ωt of becoming a retiree and ωt of staying a
worker. Once retired, the death clock begins to tick, and a retiree now faces
the probability γt of dying at the beginning of period t. For simplicity, retired
individuals cannot go back into the labor market. These probabilities imply
that the average time employed at time t is (1− ωt)−1, and that the expected
retirement at time t is (1 − γt)−1. This dynamics is easily summarized in the
following diagram:

Worker

Worker

Worker → ...

keeps workingωt+1

Retiree → ...
retirem

ent

1− ωt+
1

keeps workingω
t

Retiree

Dead

dies1− γt+1

Retiree → ...surviv
es

γt+1

retir
eme

nt

1−
ωt

Figure 3.1: Diagram ilustrating the demographic evolution. Source: Own
elaboration

Labor force Nw
t and the number of retirees evolve according to:

Nw
t = (1− ωt + nt)Nw

t−1 + ωtN
w
t−1 = (1 + nt)Nw

t−1

and
N r
t = (1− ωt)Nw

t−1 + γtN
r
t−1
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The dependency ratio ϑt ≡ Nr
t

Nw
t

evolves according to:

(1 + nt)ϑt = (1− ωt) + γtϑt−1

I am not modelling aggregate uncertainty in this framework, so that
individuals face only two idiosyncratic risks: workers suddenly losing their
income and retirees not knowing the time of their death. The uncertainty of
dying once retired is counterbalanced by a perfect annuities market in which all
(and only) retirees take part of. Each retiree hands their assets to this mutual
fund and those who survive the death lottery (that is γtN r

t−1, receive all the
returns Rt/γt.

The uncertainty faced by workers is addressed by using a CES nonex-
pected utility function, as in Epstein-Zin (1989) or Weil (1990). In this setup,
individuals are risk neutral with respect to the risk of suddenly losing income
due to retirement, but it still allows for an arbitrary intertemporal elasticity
of substitution. As Gertler (1999) states, it is desirable to mitigate the impact
of the retirement lottery, once it derives straight from the artificial retirement
scheme in this model. The parameter ρ determines the intertemporal elasticity
of consumption, given by σ ≡ (1− ρ)−1.

I model the Gold Standard period by including gold as a commodity
money, denoted byM . This modelling strategy ought to determine the nominal
side of this economy, where resides the main interest of this paper. In the
setup presented here, the real money holdings enter in the utility multiplied
by a constant µ, later calibrated. I denote V z

t as the utility of an individual
z, z ∈ {w(orker), r(etiree)}, and Cz

t and M z
t his consumption and nominal

money demand at time t, respectively.
Preferences are then given by:

V z
t =

{
(Cz

t )ρ + µ

(
M z

t

Pt

)ρ
+ βzt+1Et[Vt+1|z]ρ

} 1
ρ

Where

βzt+1 =

β , ifz=w

βγt+1 , ifz=r

Et[Vt+1|z] =

(1− ωt+1)V r
t + ωt+1V

w
t , ifz=w

V r
t , ifz=r

Individuals choose not only the amount of consumption they will enjoy
at period t, Cz

t , but also the monetary holdings M z
t , the amount of capital

they will save, Kz
t and the amount of firm shares xzF t.
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3.1
Household problems

In this section I use the general setup provided to solve for both retiree
and worker problems. I later aggregate both.

3.1.1
The retiree’s problem

The optimization problem of a retiree born at time j and retired at time
τ can be recursively written as:

V r
t (j, τ) = max

{
(Cr

t (j, τ))ρ + µ

(
M r

t (j, τ)
Pt

)ρ
+ βγt+1(V r

t+1(j, τ))ρ
} 1
ρ

subject to

Cr
t (j, τ) + M r

t (j, τ)
Pt

+Kr
t (j, τ) + Br

t (j, τ)
Pt

+ P F
t

Pt
xrF t(j, τ) =

= 1
γt

[RK
t + (1− δ)

]
Kr
t−1(j, τ)+

(
P F
t +DF

t

)
Pt

xrF,t−1(j, τ)+ 1
πt

M r
t−1(j, τ)
Pt−1

, ∀t
Where M r

t /Pt are the real monetary holdings, RK
t is the rate of return

of capital, PFt is the price of firm shares, πt is the gross consumption inflation
rate πt ≡ Pt/Pt−1 and DFt are the dividends distributed by the firm. The
solution to this problems yields an Euler Equation,

(Cr
t (j, τ))ρ−1

(Cr
t+1(j, τ))ρ−1 = β

[
RK
t+1 + (1− δ)

]
A no arbitrage condition,

P F
t+1 +DF

t+1
PFt

= Rt

πt+1
= RK

t+1 + (1− δ)

And a relationship between monetary holdings and consumption,

M r
t (j, τ)
Pt

= Cr
t (j, τ)

{
µ

1− 1/Rt+1

}σ
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To solve the model, let us define the total retiree’s assets as:

Art (j, τ) ≡ Kr
t (j, τ) + Br

t (j, τ)
Pt

+ P F
t

Pt
xrF,t(j, τ) + 1

Rt+1

M r
t (j, τ)
Pt

Then, I guess and verify the following solution:

Cr
t (j, τ) + (1− 1/Rt+1) M

r
t (j, τ)
Pt

= εtξt

(
1
γt

Rt−1

πt
Art−1(j, τ)

)

Where εtξt is the retiree’s marginal propensity to consume out of assets. I
follow Gertler (1999) in defining the worker’s marginal propensity to consume
out of wealth as ξt because the ration between these propensities, εt, is
important in the model. The non-linear difference equation that governs this
value is:

1−Ψt+1
εtξt

εt+1ξt+1
γt+1β

σ

(
Rt

πt+1

)σ−1

= εtξt

Where,

Ψt+1 ≡

[
1 + µσ

{
Rt
Rt−1

}σ−1
]−1

[
1 + µσ

{
Rt+1
Rt+1−1

}σ−1
]−1

Given the linear forms of the solutions and the fact that they do not
depend on individual characteristics of the retirees, it is straightforward that
the money demand by retirees is given by:

M r
t

Pt
= Cr

t

{
µ

1− 1/Rt+1

}σ

Plugging this into the solution guess, one obtains the closed form solution
of the aggregate amount retirees consume at the current period:

Cr
t

(
1 + (1− 1/Rt+1)1−σ µσ

)
= εtξt

(
1
γt

Rt−1

πt
Art−1

)

3.1.2
The worker’s problem

The solution to the worker problem follows basically the same steps as
the one for the retirees. To make the solution easier, I have defined the worker’s
assets Awt analogously to the retiree’s assets, done previously. The utility now
takes into account the fact the worker may retire next period.
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The recursive formulation of the optmization problem solved by the
worker born at time j is:

V w
t (j) = max

{
(Cw

t (j))ρ + µ

(
Mw

t (j)
Pt

)ρ
+ β

[
ωt+1V

w
t+1(j) + (1− ωt+1)V r

t+1(j)
]ρ} 1

ρ

subject to

Cw
t (j) + (1− 1/Rt+1) M

w
t (j)
Pt

+ Awt (j) = Wt − Twt + Rt−1

πt
Art−1(j)

The Euler equation is:

Cw
t (j)

[
βΩt+1

Rt

πt+1

] 1
1−ρ

= ωt+1C
w
t+1(j, t+ 1) + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1(j)

Where Ωt is a return adjustment term defined as:

Ωt = ωt + (1− ωt)(εt)(1/(1−σ))

Money demand function of the worker has the same form as before:

Mw
t (j)
Pt

= Cw
t (j)

[
µ

1− 1/Rt+1

]σ

To solve the problem, I guess the following solution for workers who are
still in labor force:

Cw
t (j) + (1− 1/Rt+1) M

w
t (j)
Pt

= ξt

(
Rt−1

πt
Awt−1(j) +Hw

t

)

And for those who just left it,

Cr
t (j) + (1− 1/Rt+1) M

r
t (j)
Pt

= εtξt

(
Rt−1

πt
Awt−1(j)

)

Where Hw
t is the discounted sum of all non-financial wealth, defined as:

Hw
t ≡

∞∑
ν=0

(
Wt+ν
Pt+ν

)
Πν
s=1

[
Ωt+sRt+s−1
ωt+sπt+s

] = Wt

Pt
+ ωt+1πt+1H

w
t+1

ΩtRt

Taking the same steps to follow the retiree’s problem, I obtain the
difference equation that governs the marginal propensity of the worker to
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consume out of assets,

ξt = 1− ξt
ξt+1

βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1

Since these solutions are linear and do not depend on the period that the
agent is born, obtaining the closed form solutions for the aggregate quantities
demanded by workers is simple. The workers’s money demand is:

Mw
t

Pt
= Cw

t

{
µ

1− 1/Rt+1

}σ
And the closed form solution of the aggregate amount workers consume

at the current period:

Cw
t

(
1 + (1− 1/Rt+1)1−σ µσ

)
= εtξt

(
1
γt

Rt−1

πt
Awt−1

)

3.1.3
Household Aggregation

Evolution of the assets for each cohort is easily checked with budget
restrictions. Let

λt ≡
Art
At

Then aggregate consumption is given by the sum of the consumption
solutions of retirees and workers:

Ct
[
1 + µσ (1− 1/Rt+1)1−σ

]
= ξt

{
Rt−1

πt
At−1 [1 + λt−1 (εt − 1)] +Ht

}

Total assets evolve according to:

[λt − (1− ωt+1)]At = ωt+1 (1− ξrt )λt−1
Rt−1At−1

πct

As for the total money demand,

Md
t

Pt
= Ct

[
µ

1− 1/Rt+1

]σ

3.2
Firms

There is a representative firm operating in a perfectly competitive
market, and solves the following profit maximization problem:
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max
Nt,Kt

PtYt −Rk
tKt −WtNt

Subject to the technological constraint,

Yt = (XtNt)αK1−α
t

The first order conditions to this problem yield the gross rate of return
of capital, RK

t and the real wage Wt/Pt, given by:

RK
t = (1− α) Yt

Kt

And,
Wt

Pt
= α

Yt
Nt

3.3
Equilibrium

The equilibrium in this economy is defined as:

Definition 1 (Equilibrium) Given an exogenous demographic process
{nt, γt, ωt}∞t=1, an exogenous technological process {xt}∞t=1, and an exoge-
nous money supply {M s

t }∞t=1, an equilibrium is a sequence of quantities
{Ct, At, λt, Hw

t , Yt, Kt,M
d
t }∞t=1, marginal propensities to consume {εt, ξt,Ωt}∞t=1,

prices {RK
t ,

Wt

Pt
, Pt}∞t=1 and dependency ratios {ϑt}∞t=1, such that:

a. Both retirees and workers solve their utility maximization problem subject
to their budget constraints

b. Final goods firm maximizes profits subject to technology, and intermediate
goods firms maximize profits subject to their technological constraint and
taking good demand as given

c. Markets clear (i.e., there is no excess demand or supply in assets, goods
and monetary markets)

3.4
Demographic impacts on variables

Changes in demographics, specially the increased life expectancy, will
force down the real interest rates because both workers and retirees will save
more in order to self-finance their consumption in the extra retirement years.
Taking the partial derivative of the retiree’s marginal propensity to consume
out of wealth,

∂ (εξ)
∂γ

= −βσRσ−1 [1 + (σ − 1) εR,γ] < 0
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Where εR,γ (< 0) is the elasticity of the real interest rate with respect to
the probability of surviving once retire, that is, εR,γ ≡ (∂R/R) / (∂γ/γ).

The implicit function theorem yields the same signal for ∂ξ
∂γ
:

∂ξ

∂γ
= −

βσ (ΩR)σ−1
[
(σ − 1) εR,γ −

(
Ω−ω

Ω

)
εεξ,γ

]
γ
[
1 + βσ (ΩR)σ−1

(
Ω−ω

Ω

)
1
εξ

] < 0

Where εεξ,γ ≡ εR,γ ≡ (∂εξ/εξ) / (∂γ/γ) (this is negative because
∂ (εξ) /∂γ is negative).



4
Calibration and Model experiments

I calibrate the model to mimic the movements of the economic variables
of the American economy between the years of 1850 and 1920. Each period
is set to one year. Agents are "born" in the model when they are 20 years
old, because at this age nearly all individuals are in the workforce 1. The
demographic transition is driven by the changes in life expectation (both γt

and ωt) and changes in the growth of the labor force, nt. I use Lee’s (2007)
estimates to obtain values for γt and ωt, and then interpolate them to get
the yearly series. Labor force growth is calibrated using basically the same
process: I interpolate U.S. Census population estimates to get yearly data and
then calculate its growth.

To calibrate the depreciation rate, δ, I use the net capital value and the
value of machinery and structures purchases available in Carter et al (2006)
to obtain the value of 15%.

My calibration of the technological process is trickier and erratic. To
begin with, I calibrate it based only on manufactures, while it should be taken
into account that the farming sector is representative. For the years 1866 to
1914, I use Frickey’s (1947) manufacturing production index as my output
measure, a manufacturing capital stock measure (Carter et al (2006)) and
the interpolated population to calculate the technological growth according to
usual growth accounting. To calibrate technological long-run growth, I follow
Tamura et al (2013) and set x = 0.01. As a robustness exercise, I also provide
the results by setting x = 0.01 for all periods.

The world gold stock data is obtained from the Gold Council. Finally, the
remaining parameters (that is, the discount rate β, the real money balances
preference parameter µ and the intertemporal elasticity of substitution σ) are
calibrated by minimizing the distance from the generated interest and inflation
time series with respect the the observed ones:

1There is indeed a very high child labor participation in workforce during the Nineteenth
Century. However, the share of less-than-20-years in workforce (in comparison to their own
cohort) fluctuates around 70%. Setting this age is also convenient because it matches the
evidence presented in Chapter 2.
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Figure 4.1: Calibration of technological growth. Source: Own calculations, data
comes from Frickey (1947) and Carter et al (2006)

min
{β,µ,σ}

1914∑
t=1870

(Rmodel
t (β, µ, σ)−Rdata

t )2 + (πmodelt (β, µ, σ)− πdatat )2

The baseline calibration parameter values are summarized in the table
below:

Parameter Value Description
Internal calibration

β 0.96 discount factor
µ 0.40 utility parameter
σ 0.30 utility parameter

External calibration

x 0.01 steady-state technology growth
Tamura et. al (2013)

δ 0.15 depreciation rate
n 0.0186 steady-state population growth
γ 0.8786 steady-state survival probability

ω 0.9768 steady-state probability
of staying a worker

Source: Model calibration, Carter et al (2006), Lee (2007), Tamura et al (2013)

Simulating the model with the calibration above, I obtain the paths for
the endogenous variables in Figure 4.2.
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Notice that the model captures well the low frequency movements of its
observed counterparts. Of course, it does poorly around the 1893 crisis and in
the years before World War I, for example, but these shorter frequency are not
contemplated in our setup.

4.1
Model experiments

After having detailed the model and its calibration, let me recall our
question: "Can demographic movements explain Barsky and DeLong’s (1991)
observation about the Fisher equation estimates?"

First of all, the Fisher equation says there should be a one-to-one
relationship between expected inflation and nominal interest rates. Barsky
and DeLong (1991) notice that this does not happen if one uses monetary
stock growth as an instrument for inflation. Even during the Classical Gold
Standard period. They attribute this failure due to economic agents being
uncertain about the model (and its parameters) used to forecast inflation.

My model tells us a different story. While the standard rationality
hypothesis still holds, movements in the natural interests rate make the
econometrician see a biased parameter estimate in the regression of interest. To
shed light on this point, take the equation Barsky and DeLong (1991) estimate:

Rt = β0 + β1πt + εt

It’s trivial that the IV estimates for β0 and β1 are biased if the true
underlying regression is:

Rt = β0,t + β1πt + εt

With a time-varying parameter β0,t.
This is exactly the point I make in this paper: fluctuations in the

equilibrium interest rate are not correctly captured by Barsky and DeLong’s
(1991) approach. Therefore, their point of running this IV regression is flawed
when the equilibrium interest rates change over time. This shows up when
I cancel the demographic movements and the expected one-to-one relation
between inflation and interest rates should arises.

Table 4.2 presents the parameter estimates for the IV regressions of
interest. The first row presents the estimate using the American data, while
the second one uses the simulated data from the model. Notice that, even
though the coefficients are not the same, the lesson is: the econometrician
cannot observe the unitary coefficient.
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The third row presents the IV estimate from the model-generated data
if I rule out the demographic transition, but still maintaining the overlapping
generation structure. That is, I set γt = γ, ωt = ω and nt = n, and γ, ω and
n are set in order to generate the mean work and retirement and population
growth in the data.

The fourth row presents the estimate from the model-generated data if I
set ω = 1. This is a special case nested in the model, the workhorse infinetly
lived agents model.

Regression Coefficient Standard deviation
Data 0.112 0.185

Standard calibration -0.645 0.368
Ignoring demographic transition 3.472 1.783

Infinitely lived agents 0.908 0.398

Source: Model estimates

These calculations show that when the demographic channel is crucial
to understanding what an econometrician observes. It’s also worth noticing
that the unitary coefficient is inside a 95% confidence interval built around the
estimates for the models where the demographic transition has been turned
off and where agents live indefinitely. Therefore, if a econometrician were to
conduct a hypothesis test on whether the Fisher equation holds (i.e., a test
of equality of the true parameter to the unit), then he would not refute this
hypothesis.

4.1.1
Robustness check

Since the estimates for the technological growth are quite erratic, I also
present the results for the case where I set x = 0.01 for all periods, following
Tamura et al (2013). The estimates change, but the lessons are the same: the
demographic transition is still key to understanding the unresponsiveness of
the interest rates to the monetary shocks.

Regression Coefficient Standard deviation
Data 0.112 0.185

Standard calibration 0.679 0.329
Ignoring demographic transition 1.269 0.156

Infinitely lived agents 0.737 0.483

Source: Model estimates
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Conclusion

In this paper, I analysed the unresponsiveness of the American nominal
interest rate to the inflationary movement that happened in the second half
of the Nineteenth Century with a model that takes into consideration the
demographic movements that happened during this period.

I calibrate and simulate an overlapping generations model built on
Gertler (1999). I then show that, when ignoring the demographic transitions in
the Nineteenth Century (either by setting constant the overlapping generations
structure, or by eliminating it completely with a representative infinitely lived
agent model), the IV regression ran by Barsky and DeLong (1991) yield the
expected unity coefficient.

To sum up, I contribute with a new explanation to that fact. Previous
authors (Fisher, 1906; Friedman and Schwartz, 1982; Summers, 1983; Barsky
and DeLong, 1991) have relied either on a irrationality assumption, or on
an economic mismeasurement argument (Perez and Siegler, 2003). My model
shows, under standard assumptions, that the demographic transition that
happened during these years could have lowered the equilibrium real interest
rate enough to compensate for the inflation originated from the gold mining
boom.



6
References

Abbot, J., Banks, N., Shattuck, L. (1850). Report of a General Plan for
the Promotion of Public and Personal Health. Boston: Dutton and
Wentworth, State Printers.

Barsky, R., De Long, J. (1991). Forecasting Pre-World War I Inflation:
The Fisher Effect and the Gold Standard. The Quarterly Journal of
Economics, 106(3), 815-836.

Budd, W. (1873). Typhoid Fever: Its Nature, Mode of Spreading, and
Prevention.

Carter, S., Gartner, S., Haines, M., Olmstead, S., Wright, G. (ed.) (2006).
Historical Statistics of the United States, Earliest Times to the
Present: Millennial Edition. New York: Cambridge University Press, 2006.

Carvalho, C., Ferrero, A. (2014). What Explains Japan’s Persistent
Deflation. Mimeo, PUC-Rio.

Carvalho, C. Ferrero, A., Nechio, F. (2016). Demographics and Real
Interest Rates: Inspecting the Mechanism. European Economic Review
88, 208–226.

Doll, R. (1971). The Age Distribution of Cancer: Implications for
Models of Carcinogenesis. Journal of the Royal Statistical Society,134 (2),
133-166.

Epstein, L. and S. Zin (1989). Substitution, Risk Aversion, and the Tem-
poral Behavior of Consumption and Asset Returns: A Theoretical
Framework. Econometrica 57, 937–969.

Evans, P., Wang, X. (2008).A Tale of Two Effects. The Review of Economics
and Statistics, 90(1), 147-157.

Favero, A. (2010). A structural decomposition of the U.S. trade ba-
lance: Productivity,demographics and fiscal policy. Journal of Mone-
tary Economics 57, 478–490.

Frickey, E. (1947). Production in the United States. Harvard Economic
Studies, 54.



Chapter 6. References 34

Friedman, M., Schwartz, A. (1963). A monetary history of the United
States, 1867-1960. Princeton, NJ: Princeton University Press.

Gertler, M. (1999). Government Debt and Social Security in a Life-
Cycle Economy. Carnegie Rochester Conference Series on Public Policy 50,
61-110.

Hanes, C., James, J. (2003). Wage Adjustment Under Low Inflation:
Evidence from U.S. History. American Economic Review, 93(4), 1414-
1424.

Haines, M. (1994). Estimated Life Tables for the United States, 1850-
1900. NBER Historical Working Paper No. 59.

Irwing, F. (1907). The Rate of Interest. New York: The MacMillan Com-
pany.

Kackmeister, A. (2007). Yesterday’s Bad Times Are Today’s Good Old
Times: Retail Price Changes Are More Frequent Today Than in the
1890s. Journal of Money, Credit and Banking 39 (8).

Kara, E., Von Thadden, L. (2016). Interest Rate Effects of Demographic
Changes in a New Keynesian Life-Cycle Framework. Macroeconomic
Dynamics 20, 120–164.

Keynes, J. (1930). A treatise on money, v. 2. New York: Harcourt, Brace
and Company.

Lee, C. (2001). The expected length of male retirement in the United
States, 1850-1990. Journal of Population Economics, 14, 641-650.

Macaulay, F. (1938). The Movements of Interest Rates, Bond Yields,
and Stock Prices in the United States Since 1856. NBER No. 33.

Perez, S., Siegler, M. (2003). Inflationary Expectations and the Fisher
Effect Prior to World War I. Journal of Money, Credit and Banking, 35(6),
947-965.

Ransom, R., Sutch, R. (1986). The Labor of Older Americans: Retire-
ment of Men On and Off the Job, 1870-1937. The Journal of Economic
History, 46(1), 1-30.

Sargent, T. (1973). Interest Rates and Prices in the Long Run: A Study
of the Gibson Paradox. Journal of Money, Credit and Banking, 4, 385-449.

Schmidt-Grohe, S., Uribe, M. (2005).Optimal Fiscal and Monetary Policy
in a Medium-Scale Macroeconomic Model: Expanded Version. NBER
Working Paper No. 11417.



Chapter 6. References 35

Sheedy, K. (2010), Intrinsic inflation persistence. Journal of Monetary
Economics, 57, 1049-1061.

Shiller, R., Siegel, J. (1977). The Gibson Paradox and Historical Move-
ments in Real Interest Rates. Journal of Political Economy, 85(5).

Summers, L. (1983). The Nonadjustment of Nominal Interest Rates, in
James Tobin (ed.), Macroeconomics, Prices, and Quantities. Washing-
ton: Brookings Institution.

Turner, C., Tamura, R., Mulholland, S. (2013). How important are human
capital, physical capital and total factor productivity for determining
state economic growth in the United States, 1840-2000?. Journal of
Economic Growth, 18, 319-371.

Weil, P. (1990). Nonexpected Utility in Macroeconomics. The Quarterly
Journal of Economics, 105(1), 29-42.

Wicksell, K. (1962). Lectures on Political Economy. London: Routledge
& Kegan Paul.

Wolman, A. (1999). Sticky prices, marginal cost and the behaviour of
inflation. Federal reserve bank of Richmond quarterly, 85, 29-47.



7
Appendix

This Appendix presents the model derivation in depth. First, I present
the solution to the retiree’s problem. Then to the worker’s one. Finally, I
show how to aggregate these agents to obtain the final aggregate form for the
endogenous variables and the equilibrium conditions.

7.1
The retiree’s problem

The retiree’s problem can be recursively written as:

V r
t = max

{
(Cr

t )
ρ + µ

(
M r

t

Pt

)ρ
+ βγt+1

(
V r
t+1

)ρ} 1
ρ

subject to

Pt Cr
t +M r

t + PtK
r
t +Br

t + P F
t x
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F t =
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Or still,
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Taking the first order conditions with respect to capital, bonds, shares

and real money holdings,

(Cr
t )
ρ−1 = βγt+1

(
V r
t+1

)ρ−1 ∂V r
t+1

∂Kr
t
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(Cr
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ρ−1 = βγt+1
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t )
ρ−1 = 1

PFt
βγt+1

(
V r
t+1

)ρ−1 ∂V r
t+1

∂xrF t

(Cr
t )
ρ−1 = µ

(
M r

t

Pt

)ρ−1
+ βγt+1

(
V r
t+1

)ρ−1 ∂V r
t+1

∂ (M r
t /Pt)

The envelope theorem yields the following relations:
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It follows from the first three that,

(Cr
t )
ρ−1

(Cr
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]

And we end up with the no arbitrage conditions,

P F
t+1 +DF

t+1
PFt

= Rt

πt+1
= RK

t+1 + (1− δ)

The real money holdings condition yields a slightly different equation,
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Merging with our first order condition w.r.t. bonds,
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πt+1

]−1 1
πt+1

(Cr
t )
ρ−1 = µ

(
M r

t

Pt

)ρ−1
+ (Cr

t )
ρ−1 1

Rt

(Cr
t )
ρ−1

[
1− 1

Rt

]
= µ

(
M r

t

Pt

)ρ−1

µ
(
M r

t

Pt

)ρ−1
= (Cr

t )
ρ−1

[
1− 1

Rt

]
(
M r

t

Pt

)ρ−1
= (Cr

t )
ρ−1 1

µ

[
1− 1

Rt

]

Finally, we obtain the following relationship between real money holdings
and consumption:

M r
t

P c
t

= Cr
t

{
1
µ

[
1− 1

Rt

]} 1
ρ−1

M r
t

P c
t

= Cr
t

{
µ−1

[
Rt − 1
Rt

]} 1
ρ−1

M r
t

P c
t

= Cr
t

{
µ

Rt

Rt − 1

}σ
Let me solve the model now. Let’s define:

Art ≡ Kr
t + Br

t

P c
t

+ P F
t

P c
t

xrF,t + 1
Rt

M r
t

Pt

I guess the following solution:

Cr
t + Rt − 1

Rt

M r
t

Pt
= εtξt

(
Rt−1

πt
Art−1

)

Substituting this into the budget constraint, I obtain the evolution path
to the aggregate retiree’s assets

Cr
t + M r

t

Pt
+Kr

t + Br
t

Pt
+ P F

t

Pt
xrF t = 1

γt

(
Rt−1

πt
Art−1

)

Cr
t +

[
Rt − 1
Rt

+ 1
Rt

]
M r

t

Pt
+Kr

t + Br
t

Pt
+ P F

t

Pt
xrF t = 1

γt

(
Rt−1

πt
Art−1

)
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Cr
t + Rt − 1

Rt

M r
t

Pt
+ 1
Rt

M r
t

Pt
+Kr

t + Br
t

P c
t

+ P F
t

P c
t

xrF t︸ ︷︷ ︸
≡Art

= 1
γt

(
Rt−1

πt
Art−1

)

εtξt

(
Rt−1

πt
Art−1

)
+ Art = 1

γt

(
Rt−1

πt
Art−1

)

Art =
(
Rt−1

πt
Art−1

)
− εtξt

(
Rt−1

πt
Art−1

)

Art = (1− εtξt)
(
Rt−1

πt
Art−1

)
Now plugging this into the Euler equation
,

Cr
t

Cr
t+1

=
[
β
Rt

πt+1

]−σ
Recall that

Cr
t + Rt − 1

Rt

M r
t

Pt
= Cr

t

[
1 + Rt − 1

Rt

{
µ

Rt

Rt − 1

}σ]
= εtξt

(
Rt−1

πt
Art−1

)

And, therefore

Cr
t =

[
1 + µσ

{
Rt

Rt − 1

}σ−1]−1

εtξt

(
Rt−1

πt
Art−1

)

For the sake of notation, define:

Ψt+1 ≡
ψt
ψt+1

≡

[
1 + µσ

{
Rt
Rt−1

}σ−1
]−1

[
1 + µσ

{
Rt+1
Rt+1−1

}σ−1
]−1

εtξt
1
γt

(
Rt−1
πct

Art−1

)
εt+1ξt+1

1
γt+1

(
Rt
πct+1

Art

)Ψt+1 =
[
β
Rt

πt+1

]−σ

Ψt+1εtξt
1
γt

(
Rt−1

πt
Art−1

)
= εt+1ξt+1

1
γt+1

(
Rt

πt+1
Art

)[
β
Rt

πt+1

]−σ

Ψt+1εtξt
1
γt

(
Rt−1

πt
Art−1

)
= εt+1ξt+1

(
1
γt+1

Rt

πt+1

[
(1− εtξt)

(
1
γt

Rt−1

πt
Art−1

)]) [
β
Rt

πt+1

]−σ

Ψt+1εtξtγt+1 = εt+1ξt+1

(
Rt

πt+1
[1− εtξt]

)[
β
Rt

πct+1

]−σ

1−Ψt+1
εtξt

εt+1ξt+1
γt+1β

σ

(
Rt

πt+1

)σ−1

= εtξt

The retiree consumption solution is now done. Let’s now solve his value
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function. I conjecture the value function solution is linearly dependent on
consumption,

V r
t = ∆r

tC
r
t

As it’s a solution,

V r
t =

[
(Cr

t )
ρ + µ

(
M r

t

Pt

)ρ
+ βγt+1

(
V r
t+1

)ρ] 1
ρ

V r
t =

[
(Cr

t )
ρ + µ

(
Cr
t

{
µ

Rt

Rt − 1

}σ)ρ
+ βγt+1

(
V r
t+1

)ρ] 1
ρ

V r
t =

[
(Cr

t )
ρ

[
1 + µ

{
µ

Rt

Rt − 1

}σρ]
+ βγt+1

(
V r
t+1

)ρ] 1
ρ

(∆r
t )
ρ (Cr

t )
ρ = (Cr

t )
ρ

[
1 + µ1+σρ

{
Rt

Rt − 1

}σρ
−σρ

]
+ βγt+1

(
∆r
t+1C

r
t+1

)

Using the Euler Equation,

(∆r
t )
ρ (Cr

t )
ρ = (Cr

t )
ρ

[
1 + µ1+σρ

{
Rt

Rt − 1

}σρ]
+βγt+1

(
∆r
t+1

)ρ [(
β
Rt

πt+1

)σ]ρ
(Cr

t )
ρ

(∆r
t )
ρ =

[
1 + µ1+σρ

{
Rt

Rt − 1

}σρ]
+ βγt+1

(
∆r
t+1

)ρ [(
β
Rt

πt+1

)σ]ρ
It’s worth noticing that

σ = 1
1− ρ → σρ = ρ

1− ρ

σρ+ 1 = ρ

1− ρ + 1 = 1
1− ρ = σ

σ − 1 = ρ

1− ρ → σ − 1 = σρ

Then,

(∆r
t )
ρ =

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
+ βσ

[
Rt

πt+1

]σ−1

γt+1
(
∆r
t+1

)ρ
It is straightforward to show that the solution to this difference equation

is:

∆r
t =

 εtξt[
1 + µσ

{
Rt
Rt−1

}σ−1
]

− 1
ρ
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Because...[
1 + µσ

{
Rt
Rt−1

}σ−1
]

εtξt
=
[
1 + µσ

{
Rt

Rt − 1

}σ−1]
+βσ

[
Rt

πt+1

]σ−1

γt+1

[
1 + µσ

{
Rt+1
Rt+1−1

}σ−1
]

ψt+1εt+1ξt+1

1 = εtξt + βσ
[
Rt

πt+1

]σ−1

γt+1
εtξt

εt+1ξt+1

[
1 + µσ

{
Rt+1
Rt+1−1

}σ−1
]

[
1 + µσ

{
Rt
Rt−1

}σ−1
]

1−Ψt+1β
σ

[
Rt

πt+1

]σ−1

γt+1
εtξt

εt+1ξt+1
= εtξt

Done.

7.2
The worker’s problem

The worker’s problem can be recursively written as:

V w
t = max

{
(Cw

t )ρ + µ
(
Mw

t

Pt

)ρ
+ β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ} 1
ρ

subject to

Cw
t +M

w
t

Pt
+Kw

t + Bw
t

Pt
+ P F

t

Pt
xwFt =

= 1
γt

[RK
t + (1− δ)

]
Kw
t−1 + Rt−1

πt

Bw
t−1

Pt−1
+

(
P F
t +DF

t

)
Pt

xwF,t−1 + 1
πt

Mw
t−1

Pt−1


First, let’s define Awt :

Awt ≡ Kw
t + Bw

t

P c
t

+ P F
t

P c
t

xwF,t + 1
Rt+1

P g
t

P c
t

Mw
t

The problem now becomes:

V w
t = max

{
(Cw

t )ρ + µ
(
Mw

t

Pt

)ρ
+ β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ} 1
ρ

subject to

Cw
t + Rt+1 − 1

Rt+1

Mw
t

P c
t

+ Awt = Wt + Rt−1

πt
Art−1
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7.3
Consumption Euler Equation

The FOC wrt Awt is:

(Cw
t )ρ−1 = β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ−1
{
ωt+1

∂V w
t+1

∂Awt
+ (1− ωt+1) ∂V

r
t+1

∂Awt

}

The envelope theorem gives us:

∂V w
t

∂Awt
= (V w

t )1−ρ (Cw
t )ρ−1 Rt−1

πt

and,
∂V r

t

∂Awt
= (V r

t )1−ρ (Cr
t )
ρ−1 Rt−1

πt

Substituting these into the FOC,

(Cw
t )ρ−1 = β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ−1
×

×
{
ωt+1

(
V w
t+1

)1−ρ (
Cw
t+1

)ρ−1 Rt

πt+1
+ (1− ωt+1)

(
V r
t+1

)1−ρ (
Cr
t+1

)ρ−1 Rt

πt+1

}

I use the previous conjecture, V r
t = ∆r

tC
r
t , and also conjecture now that

V w
t = ∆w

t C
w
t .

(Cw
t )ρ−1 = β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ−1
×

×
{
ωt+1

(
∆w
t+1C

w
t+1

)1−ρ (
Cw
t+1

)ρ−1 Rt

πt+1
+ (1− ωt+1)

(
∆r
t+1C

r
t+1

)1−ρ (
Cr
t+1

)ρ−1 Rt

πt+1

}

(Cw
t )ρ−1 = β

Rt

πt+1

[
ωt+1∆w

t+1C
w
t+1 + (1− ωt+1) ∆r

t+1C
r
t+1

]ρ−1
×

×
{
ωt+1

(
∆w
t+1

)1−ρ
+ (1− ωt+1)

(
∆r
t+1

)1−ρ
}

(Cw
t )ρ−1 = β

Rt

πt+1

[
ωt+1C

w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

]ρ−1

×

×

ωt+1 + (1− ωt+1)
(

∆r
t+1

∆w
t+1

)1−ρ
︸ ︷︷ ︸

≡Ωt+1

(Cw
t )ρ−1 = βΩt+1

Rt

πt+1

[
ωt+1C

w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

]ρ−1
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Cw
t

[
βΩt+1

Rt

πt+1

] 1
1−ρ

= ωt+1C
w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

This is our Euler Equation.

7.4
Real money balances

Let’s find out the relationship between real money balances and con-
sumption for a worker. The FOC of interest is:

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ−1
×

×

ωt+1
∂V w

t+1

∂
(
P gt
P ct
Mw

t

) + (1− ωt+1) ∂V r
t+1

∂
(
P gt
P ct
Mw

t

)


The envelope theorem gives us:

∂V w
t

∂
(
Mw
t−1

P ct−1

) = (V w
t )1−ρ (Cw

t )ρ−1 1
πt

and,
∂V r

t

∂
(
Mw
t−1

P ct−1

) = (V r
t )1−ρ (Cr

t )
ρ−1 1

πt

Putting these together we obtain:

(Cw
t )ρ−1 = µ

(
Mw

t

P c
t

)ρ−1

+ β
1
πt+1

[
ωt+1V

w
t+1 + (1− ωt+1)V r

t+1

]ρ−1
×

×
{
ωt+1

(
V w
t+1

)1−ρ (
Cw
t+1

)ρ−1
+ (1− ωt+1)

(
V r
t+1

)1−ρ (
Cr
t+1

)ρ−1
}

I now conjecture that:

V w
t = ∆w

t C
w
t and V r

t = ∆r
tC

r
t

∆w
t =

 ξt[
1 + µσ

{
Rt
Rt−1

}σ−1
]

− 1
ρ

→ ∆r
t

∆w
t

=

 εtξt[
1+µσ

{
Rt
Rt−1

}σ−1
]

− 1
ρ

 ξt[
1+µσ

{
Rt
Rt−1

}σ−1
]

− 1
ρ

= ε
− 1
ρ

t



Chapter 7. Appendix 44

Then,

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

[
ωt+1∆w

t+1C
w
t+1 + (1− ωt+1) ∆r

t+1C
r
t+1

]ρ−1
×

×
{
ωt+1

(
∆w
t+1C

w
t+1

)1−ρ (
Cw
t+1

)ρ−1
+ (1− ωt+1)

(
∆r
t+1C

r
t+1

)1−ρ (
Cr
t+1

)ρ−1
}

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

[
ωt+1∆w

t+1C
w
t+1 + (1− ωt+1) ∆r

t+1C
r
t+1

]ρ−1
×

×
{
ωt+1

(
∆w
t+1

)1−ρ
+ (1− ωt+1)

(
∆r
t+1

)1−ρ
}

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

(
∆w
t+1

)ρ−1
[
ωt+1C

w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

]ρ−1

×

×
(
∆w
t+1

)1−ρ
ωt+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)1−ρ


(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

[
ωt+1C

w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

]ρ−1

×

×

ωt+1 + (1− ωt+1)
(

∆r
t+1

∆w
t+1

)1−ρ
︸ ︷︷ ︸

≡Ωt+1

Using the previous Euler Equation

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

Cw
t

[
βΩt+1

Rt

πt+1

] 1
1−ρ
ρ−1

×

×

ωt+1 + (1− ωt+1)
(

∆r
t+1

∆w
t+1

)1−ρ
︸ ︷︷ ︸

≡Ωt+1

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ β

1
πt+1

Ωt+1 (Cw
t )ρ−1

[
βΩt+1

Rt

πt+1

]−1

(Cw
t )ρ−1 = µ

(
Mw

t

Pt

)ρ−1
+ (Cw

t )ρ−1 1
Rt

(Cw
t )ρ−1

[
1− 1

Rt

]
= µ

(
Mw

t

Pt

)ρ−1
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Recall that 1
ρ−1 = −σ,

(Cw
t )
[
1− 1

Rt

]−σ
= µ−σ

(
Mw

t

Pt

)

(Cw
t )
[
1− 1

Rt

]−σ
= µ−σ

(
Mw

t

Pt

)
Finally,

Mw
t

Pt
= Cw

t

[
µ

Rt

1−Rt

]σ

7.5
Solution

First, let’s recall our Awt definition:

Awt ≡ Kw
t + Bw

t

P c
t

+ P F
t

P c
t

xwF,t + 1
Rt

Mw
t

Pt

I guess the following solution:

Cw
t + Rt − 1

Rt

Mw
t

Pt
= ξt

(
Rt−1

πct
Awt−1 +Hw

t

)

And the decision rule for a retiree who just abbandoned the labor force
is

Cr
t + Rt+1 − 1

Rt+1

M r
t

Pt
= εtξt

(
Rt−1

πct
Awt−1

)

Where Hw
t is the net present value of non financial wealth, defined as:

Hw
t ≡

∞∑
ν=0

Wt+ν
Pt+ν

Πν
s=1

[
Ωt+sRt+s−1
ωt+sπt+s

] = Wt

Pt
+ ωt+1πt+1H

w
t+1

ΩtRt

Let’s combine our guess with our budget restriction:

Cw
t + Rt+1 − 1

Rt+1

Mw
t

Pt
+ Awt = Wt

Pt
+ Rt−1

πt
Art−1

ξt

(
Rt−1

πct
Awt−1 +Hw

t

)
+ Awt = Wt

Pt
+ Rt−1

πt
Art−1

ξt

(
Rt−1

πt
Awt−1 + Wt

Pt
+ ωt+1πt+1H

w
t+1

ΩtRt

)
+ Awt = Wt

Pt
+ Rt−1

πt
Art−1

ξt

(
ωt+1πt+1H

w
t+1

ΩtRt

)
+ Awt = (1− ξt)

[
Wt

Pt
+ Rt−1

πt
Art−1

]
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Awt = (1− ξt)
[
Wt

Pt
+ Rt−1

πt
Art−1

]
− ξt

(
ωt+1πt+1H

w
t+1

ΩtRt

)

Awt = (1− ξt)
[
Wt

Pt
+ Rt−1

πt
Art−1

]
−ξt

(
ωt+1πt+1H

w
t+1

ΩtRt

)
+
(
ωt+1πt+1H

w
t+1

ΩtRt

)
−
(
ωt+1πt+1H

w
t+1

ΩtRt

)

Awt + ωt+1πt+1H
w
t+1

ΩtRt

= (1− ξt)
[
Hw
t + Rt−1

πt
Art−1

]
Which is how the workers’ assets evolve. Now, getting back to our Euler

equation,

Cw
t

[
βΩt+1

Rt

πt+1

] 1
1−ρ

= ωt+1C
w
t+1 + (1− ωt+1)

(
∆r
t+1

∆w
t+1

)
Cr
t+1

Using our solution guess,

Cw
t

[
1 + Rt+1 − 1

Rt+1

[
µ

Rt

1−Rt

]σ]
= ξt

(
Rt−1

πt
Awt−1 +Hw

t

)

ξt

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

] 1
1−ρ 1[

1 + Rt+1−1
Rt+1

[
µ Rt

1−Rt

]σ] =

= ωt+1ξt+1

(
Rt

πt
Awt +Hw

t+1

) 1[
1 + Rt+2−1

Rt+2

[
µ Rt+1

1−Rt+1

]σ]+

+ (1− ωt+1)
(

∆r
t+1

∆w
t+1

)
εt+1ξt+1

(
Rt

πt
Awt

) 1[
1 + Rt+2−1

Rt+2

[
µ Rt+1

1−Rt+1

]σ]

ξt

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

] 1
1−ρ

[
1 + Rt+2−1

Rt+2

[
µ Rt+1

1−Rt+1

]σ][
1 + Rt+1−1

Rt+1

[
µ Rt

1−Rt

]σ]
︸ ︷︷ ︸

≡Ψt+1

=

= ωt+1ξt+1

(
Rt

πt
Awt +Hw

t+1

)
+ (1− ωt+1) εt+1ξt+1

(
∆r
t+1

∆w
t+1

)(
Rt

πt
Awt

)

ξt

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πct+1

]σ
Ψt+1 =

= ωt+1ξt+1

(
Rt

πct
Awt +Hw

t+1

)
+ (1− ωt+1) εt+1ξt+1

(
∆r
t+1

∆w
t+1

)(
Rt

πt
Awt

)
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ξt

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

]σ
Ψt+1 =

= ωt+1ξt+1
Rt

πt
Awt + ωt+1ξt+1H

w
t+1 + (1− ωt+1) ξt+1 (εt+1)1− 1

ρ

(
Rt

πt
Awt

)

ξt
ξt+1

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

]σ
Ψt+1 =

= ωt+1
Rt

πt
Awt + (1− ωt+1) (εt+1)1− 1

ρ

(
Rt

πt
Awt

)
+ ωt+1ξt+1H

w
t+1

ξt
ξt+1

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

]σ
Ψt+1 =

=
[
ωt+1 + (1− ωt+1) (εt+1)1− 1

ρ

] Rt

πt
Awt + ωt+1ξt+1H

w
t+1

ξt
ξt+1

(
Rt−1

πt
Awt−1 +Hw

t

) [
βΩt+1

Rt

πt+1

]σ
Ψt+1 =

=
[
ωt+1 + (1− ωt+1) (εt+1)

ρ−1
ρ

]
︸ ︷︷ ︸

≡Ωt+1

Rt

πt
Awt + ωt+1ξt+1H

w
t+1

ξt
ξt+1

(
Rt−1

πct
Awt−1 +Hw

t

)[
βΩt+1

Rt

πct+1

]σ
Ψt+1 = Ωt+1

Rt

πt
Awt + ωt+1ξt+1H

w
t+1

ξt
ξt+1

(
Rt−1

πt
Awt−1 +Hw

t

)
βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1 = Awt + ωt+1ξt+1H
w
t+1

Ωt+1
Rt
πt

Let’s recall the law of motion of workers’s assets...

Awt + ωt+1πt+1H
w
t+1

ΩtRt

= (1− ξt)
[
Hw
t + Rt−1

πt
Art−1

]

Putting these together,

ξt
ξt+1

(
Rt−1

πt
Awt−1 +Hw

t

)
βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1 = (1− ξt)
[
Hw
t + Rt−1

πt
Art−1

]

ξt
ξt+1

βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1 = 1− ξt

ξt = 1− ξt
ξt+1

βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1

Done.



Chapter 7. Appendix 48

7.6
Aggregating workers and retirees

Let’s recall our consumption solutions:

Cr
t

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= εtξt

(
Rt−1

πt
Art−1

)

Cw
t

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

(
Rt−1

πt
Awt−1 +Hw

t

)
Let’s also define λt as the share of total capital held by retirees. That is,

λt ≡
Art
At

The aggregate consumption function is the sum of the solutions,

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= εtξtλt−1

(
Rt−1At−1

γtπt

)
+ ξt

(
Rt−1At−1

πt
(1− λt−1) +Hw

t

)

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

{
εtλt−1

(
Rt−1At−1

γtπt

)
+ Rt−1At−1

πt
(1− λt−1) +Ht

}

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

{
λt−1

εt
γt

(
Rt−1At−1

πt

)
− λt−1

Rt−1At−1

πt
+ Rt−1At−1

πt
+Ht

}

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

{
λt−1

(
Rt−1At−1

πt

)(
εt
γt
− 1

)
+ Rt−1At−1

πt
+Ht

}

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

{
Rt−1At−1

πt
[λt−1 (εt − 1) + 1] +Ht

}

Aggregate assets for retirees constitute of the remaining assets by those
who were already retired and the savings that the newly retired have:

Art = Rt−1

πt
Art−1−Cr

t−
Rt − 1
Rt

M r
t

Pt
+(1− ωt+1)

(
Rt−1A

w
t−1

πt
+ Wt

Pt
Nw
t − Cw

t −
Rt − 1
Rt

Mw
t

Pt

)

Art = Rt−1

πt
Art−1−εtξt

(
1
γt

Rt−1

πt
Art−1

)
+(1− ωt+1)

(
Rt−1A

w
t−1

πt
+ Wt

Pt
Nw
t − ξt

(
Rt−1

πct
Awt−1 + Wt

Pt
Nw
t

))

Art = Rt−1

πt
Art−1−εtξt

(
1
γt

Rt−1

πt
Art−1

)
+(1− ωt+1)

(
Rt−1A

w
t−1

πt
+ Wt

Pt
Nw
t − ξt

(
Rt−1

πct
Awt−1 + Wt

Pt
Nw
t

))

As for workers,

Awt + ωt+1H
w
t+1

ΩtRt/πt+1
= (1− ξt)

[
Hw
t + Rt−1

πt
Art−1

]

Awt = ωt+1

(
Rt−1A

w
t−1

πt
+ WtN

w
t

Pt
− Cw

t −
Rt − 1
Rt

Mw
t

Pt

)



Chapter 7. Appendix 49

Putting the consumption solution for the retiree together with the last
two equations, we obtain the law of motion of assets distribution:

Cr
t + Rt − 1

Rt

M r
t

Pt
= εtξt

(
1
γt

Rt−1

πt
Art−1

)

λtAt = Rt−1

πt
Art−1−εtξt

(
1
γt

Rt−1

πt
Art−1

)
+Rt−1A

w
t−1

πt
+Wt

Pt
Nw
t −ξt

(
Rt−1

πct
Awt−1 + Wt

Pt
+ ωt+1πt+1H

w
t+1

ΩtRt

)

λtAt =
[
1− εtξt

γt

] (
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1)

(
(1− λt)At

ωt+1

)

λtAtωt+1 =
[
1− εtξt

γt

]
ωt+1

(
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1) ((1− λt)At)

λtAtωt+1 =
[
1− εtξt

γt

]
ωt+1

(
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1)At − λtAt + ωt+1λtAt

λtAt =
[
1− εtξt

γt

]
ωt+1

(
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1)At

[λt − (1− ωt+1)]At = ωt+1 [1− εtξt]
(
Rt−1

πt
λt−1At−1

)

λtAtωt+1 = [1− εtξt]ωt+1

(
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1)At − λt (1− ωt+1)At

λtAtωt+1 = [1− εtξt]ωt+1

(
Rt−1

πt
λt−1At−1

)
+ (1− ωt+1)At − λtAt + λtAtωt+1

[λt − (1− ωt+1)]At = λt−1ωt+1 [1− εtξt]
(
Rt−1

πt
At−1

)

[λt − (1− ωt+1)]At = ωt+1 (1− ξrt )λt−1
Rt−1At−1

πt

As for the total money demand, let’s write our cohort demands again:

M r
t

Pt
= Cr

t

[
µ

Rt

1−Rt

]σ

Mw
t

Pt
= Cw

t

[
µ

Rt

1−Rt

]σ
It follows that the total money demand in the economy is the sum of

these last two,
Md

t

Pt
= Ct

[
µ

Rt

1−Rt

]σ
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The monetary market equilibrium implies that:

Md
t = M s

t

7.7
Summary of model equations

Money demand

Md
t

Pt
= Ct

[
µ

Rt

1−Rt

]σ
Evolution of asset ratio

[λt − (1− ωt+1)]At = ωt+1 (1− ξrt )λt−1
Rt−1At−1

πt

Consumption

Ct

[
1 + µσ

{
Rt

Rt − 1

}σ−1]
= ξt

{
Rt−1

πt
At−1 [1 + λt−1 (εt − 1)] +Ht

}

Worker’s marginal propensity to consume out of assets

ξt = 1− ξt
ξt+1

βσ
[
Ωt+1

Rt

πt+1

]σ−1

Ψt+1

Evolution of non-financial assets

Hw
t ≡

Wt

Pt
+ ωt+1H

w
t+1

(1 + nt+1)(1 + xt+1)ΩtRt/πt+1

Ratio
Ωt+1 = ωt+1 + (1− ωt+1) (ε)

1
1−σ

Retiree’s marginal propensity to consume out of assets

1−Ψt+1
εtξt

εt+1ξt+1
γt+1β

σ

(
Rt

πt+1

)σ−1

= εtξt

Ratio

Ψt+1 =

[
1 + µσ

{
Rt+1
Rt+1−1

}σ−1
]

[
1 + µσ

{
Rt
Rt−1

}σ−1
]

Evolution of capital

Kt+1 = Yt − Ct + (1− δ)Kt
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Aggregate assets

At = Kt + 1
Rt

Mt

Pt
+ P F

t

Pt

7.8
Steady state

One can express the steady state conveniently as the following set of
equations:

Ψ = 1

ξ = 1− βσ
[
ΩR
π

]σ−1

1− γβσ
(
R

π

)σ−1
= εξ

Ω = ω + (1− ω) ε
1

σ−1

Rk = (1− α) y
k

+ (1− δ) y=k1−α
= (1− α) k−α + (1− δ)

k =
[

1− α
Rk − (1− δ)

] 1
α

→ y =
[

1− α
Rk − (1− δ)

] 1−α
α

λ− 1 + ω = ω (1− εξ) R
π

1
(1 + x)(1 + n)λ

λ

[
ω (1− εξ) R

π

1
(1 + x)(1 + n)

]
= 1− ω

λ = (1− ω) (1 + x) (1 + n)
ω (1− εξ)R/π

h = αy

1− ω(1+x)(1+n)
ΩR/π

c

[
1 + µσ

{
R

R− 1

}σ−1]
= εξ

{
R

π
a [1 + λ (ε− 1)] + h

}

a = k + 1
R
c
[
µ

R

R− 1

]σ

ψ = 1− ω
1 + n− γ
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