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Abstract 

In this paper we consider a nonlinear model based on neural networks as well as linear 

models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy 

for daily volatility, we consider a consistent and unbiased estimator of the integrated 

volatility that is computed from high frequency intra-day returns. We also consider a 

simple algorithm based on bagging (bootstrap aggregation) in order to specify the models 

analyzed in this paper. 
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1. Introduction  

Given the rapid growth in financial markets and the continual development of new and 

more complex financial instruments, there is an ever-growing need for theoretical and 

empirical knowledge of the volatility inherent in financial time series. It is widely known 

that the daily returns of financial assets, especially of stocks, are difficult, if not 

impossible, to predict, although the volatility of the returns seems to be relatively easier 

to forecast. Therefore, it is hardly surprising that financial econometrics and, in particular, 

the modeling of financial volatility, has played such a central role in modern pricing and 

risk management theories.  

 There is, however, an inherent problem in using models where the volatility 

measure plays a central role. The conditional variance is latent, and hence is not directly 

observable. It can be estimated, among other approaches, by the (Generalized) 

Autoregressive Conditional Heteroskedasticity, or (G)ARCH, family of models proposed 

by Engle (1982) and Bollerslev (1986), stochastic volatility (SV) models (see, for 

example, Taylor (1986)), or exponentially weighted moving averages (EWMA), as 

advocated by the Riskmetrics methodology (see McAleer (2005) for a recent exposition 

of a wide range of univariate and multivariate, conditional and stochastic, models of 

volatility, and Asai, McAleer and Yu (2006) for a review of the growing literature on 

multivariate stochastic volatility models). However, as observed by Bollerslev (1987), 

Malmsten and Teräsvirta (2004), and Carnero, Peña, and Ruiz (2004), among others, 

most of the latent volatility models fail to describe satisfactorily several stylized facts that 

are observed in financial time series.  
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 An empirical fact that standard latent volatility models fail to describe in an 

adequate manner is the low, but slowly decreasing, autocorrelations in the squared returns 

that are associated with high excess kurtosis of returns. Correctly describing the 

dynamics of the returns is important in order to obtain accurate forecasts of the future 

volatility which, in turn, is important in risk analysis and management. In this sense, the 

assumption of Gaussian standardized returns has been refuted in many studies, and 

heavy-tailed distributions have instead been used. 

 The search for an adequate framework for the estimation and prediction of the 

conditional variance of financial assets returns has led to the analysis of high frequency 

intraday data. Merton (1980) noted that the variance over a fixed interval can be 

estimated arbitrarily, although accurately, as the sum of squared realizations, provided the 

data are available at a sufficiently high sampling frequency. More recently, Andersen and 

Bollerslev (1998) showed that ex post daily foreign exchange volatility is best measured 

by aggregating 288 squared five-minute returns. The five-minute frequency is a trade-off 

between accuracy, which is theoretically optimized using the highest possible frequency, 

and microstructure noise that can arise through the bid-ask bounce, asynchronous trading, 

infrequent trading, and price discreteness, among other factors (see Madhavan (2000) and 

Biais, Glosten and Spatt (2005) for very useful surveys).  

 Ignoring the remaining measurement error, which can be problematic, the ex post 

volatility essentially becomes “observable”. Andersen and Bollerslev (1998) and Patton 

(2008) used this new volatility measure to evaluate the out-of-sample forecasting 

performance of GARCH models.  As volatility becomes “observable”, it can be modeled 

directly, rather than being treated as a latent variable. Based on the theoretical results of 
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Barndorff-Nielsen and Shephard (2002), Andersen, Bollerslev, Diebold and Labys (2003) 

and Meddahi (2002), several recent studies have documented the properties of realized 

volatilities constructed from high frequency data. However,  microstructure effects 

introduce a severe bias on the daily volatility estimation. Zhang, Mykland and Aït-

Sahalia (2005), Bandi and Russell (2006), Hansen and Lunde (2006), and Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008), among others, have discussed various 

solutions to the inconsistency problem. 

 In this paper we consider the forecasting of stock marketing volatility via 

nonlinear models based on a neural network version of the Heterogenous Autoregressive 

Model (HAR) of Corsi (2009). As in Hillebrand and Medeiros (2009) we evaluate the 

benefits of bagging (bootstrap aggregation) in forecasting daily volatility as well as the 

inclusion of past cumulated returns over different horizons as possible predictors. As the 

number of predictors can get quite large, the application of bagging is recommended as a 

device to improve forecasting performance.  

 The remainder of the paper is organized as follows. In Section 2, we briefly 

discuss the main concepts in construction realized volatility measures. In Section 3, the 

models considered in this paper are presented, while in Section 4 we describe the bagging 

methodology to specify the models and construct forecasts. The empirical results are 

presented in Section 5. Section 6 concludes the paper. 

 

2. Realized Volatility 

Suppose that, along day t, the logarithmic prices of a given asset follow a continuous time 

diffusion process, as follows: 
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ݐሺ݀  ߬ሻ ൌ ݐሺߤ  ߬ሻ  ݐሺߪ  ߬ሻܹ݀ሺݐ  ߬ሻ, 0  ߬  1, ݐ ൌ 1,2,3, …, (1)

where ሺݐ  ߬ሻ is the logarithmic  price at time ݐ  ݐሺߤ  ߬  ߬ሻ is the drift component, 

ݐሺߪ  ߬ሻ  is the instantaneous volatility (or standard deviation), and ܹሺݐ  ߬ሻ  is a 

standard Brownian motion. 

 Andersen, Bollerslev, Diebold and Labys (2003) and Barndorff-Nielsen and 

Shephard (2002) showed that daily returns, ݎሺݐሻ ൌ ሻݐሺ െ ݐሺ െ 1ሻ , are Gaussian 

conditionally on ௧࣠ ؠ ࣠ሼߤሺݐ  ߬ െ 1ሻ, ݐሺߪ  ߬ െ 1ሻሽఛୀ
ఛୀଵ, the ߪ-algebra (information set) 

generated by the sample paths of ߤሺݐ  ߬ െ 1ሻ and ߪሺݐ  ߬ െ 1ሻ, 0  ߬  1, such that  

|௧ݎ ௧࣠~N ቈන ݐሺߤ  ߬ െ 1ሻ݀߬
ଵ


, න ݐሺߪ  ߬ െ 1ሻ݀߬

ଵ


.

 

The term ܫ ௧ܸ ൌ  ݐሺߪ  ߬ െ 1ሻ݀߬ଵ
  is known as the integrated variance, which is a 

measure of the day-t ex post volatility. The integrated variance is typically the object of 

interest as a measure of the true daily volatility. 

 In practical applications, prices are observed at discrete and irregularly spaced 

intervals and there are many ways to sample the data. Suppose that on a given day ݐ, we 

partition the interval [0,1] and define the grid of observation times ሼ߬ଵ, ڮ , ߬ሽ, 0 ൌ ߬ଵ ൏

߬ଶ ڮ ൏ ߬ ൌ 1. The length of the ݅th subinterval is given by ߜ ൌ ߬ െ ߬ିଵ. The most 

widely used sampling scheme is calendar time sampling, where the intervals are 

equidistant in calendar time, that is ߜ ൌ 1 ݊⁄ . Let ௧,, ݅ ൌ 1, … , ݊, be the ݅th log price 

observation during day ݐ, such that ݎ௧, ൌ ௧, െ  ௧,ିଵ is the ݅th intra-period return of day

 Realized variance is defined as .ݐ

ܴ ௧ܸ ൌ  ௧,ݎ
ଶ



ୀଶ

. 
(2)



 6

Realized volatility is the square-root of (2).  

 Under regularity conditions, including the assumption of uncorrelated intraday 

returns, realized variance ܴ ௧ܸ
ଶ is a consistent estimator of integrated variance, such that 

ܴ ௧ܸ
ଶ 

՜ ܫ ௧ܸ. However, when returns are serially correlated, realized variance is a biased 

and inconsistent estimator of integrated variance. Serial correlation may be the result of 

market microstructure effects such as bid-ask bounce and discreteness of prices 

(Campbell, Lo, and MacKinlay 1997, Madhavan 2000, Biais, Glosten, and Spatt 2005). 

These effects prevent very fine sampling partitions. Realized volatility is therefore not an 

error-free measure of volatility.  

 The search for asymptotically unbiased, consistent, and efficient methods for 

measuring realized volatility in the presence of microstructure noise has been one of the 

most active research topics in financial econometrics over the last few years. While early 

references in the literature, such as Andersen, Bollerslev, Diebold, and Ebens (2001), 

advocated the simple selection of an arbitrary lower frequency (typically 5-15 minutes) to 

balance accuracy and the dissipation of microstructure bias, a procedure that is known as 

sparse sampling, recent articles have developed estimators that dominate this procedure.  

 Recently, Barndorff-Nielsen, Hansen, Lunde and Shephard (2008), hereafter 

BHLS (2008), proposed the flat-top kernel-based estimator: 

ܴ ௧ܸ
ሺுௌሻ ൌ ܴ ௧ܸ   ݇ ൬

݄ െ 1
ܪ ൰ ሺߛො  ොିሻߛ

ு

ୀଵ

, 
(3)

where ݇ሺݔሻ  for ݔ א ሾ0,1ሿ  is a non-stochastic weight function such that ݇ሺ0ሻ ൌ 1  and 

݇ሺ1ሻ ൌ 0, ܴ ௧ܸ is defined as in (2) and   
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ොߛ ൌ
݊

݊ െ ݄  ௧,ାݎ௧,ݎ

ି

ୀଵ

. 

BHLS (2008) discussed different kernels and provided all the technical details.  

 

3. The Models 

Let ݕ௧ be the square-root of the logarithm of a consistent and unbiased estimator for the 

integrated variance of day ݐ, such as the estimator in (3), and call it the daily “realized 

volatility”1. Define daily accumulated logarithm returns over an ݄-period interval as  

,௧ݎ ൌ  ௧ିݎ

ିଵ

ୀ

, 
(4)

where ݎ௧  is the daily return at day ݐ . Furthermore, define the average log realized 

volatility over ݄ -days as 

,௧ݕ ൌ
1
݄  ௧ିݕ

ିଵ

ୀ

. 
(5)

3.1. The Linear Heterogeneous Autoregressive Model 

 The Linear Heterogeneous Autoregressive (HAR) model proposed by Corsi 

(2009) is defined as 

௧ݕ ൌ ߚ   ఐ,௧ିଵݕߚ
ఐאூ

 ௧ߝ ൌ ߚ  ௧ିଵ࢞Ԣࢼ  ௧, (6)ߝ

where ࢞௧ିଵ ൌ ቀݕఐభ,௧ିଵ, ڮ , ఐ,௧ିଵቁݕ Ԣ, ܫ ൌ ൫ߡଵ, ,ଶߡ ڮ , indices with 0  ൯ is a set ofߡ ൏ ଵߡ ൏

ଶߡ ൏ ڮ ൏ ߡ ൏ ∞  and ݅ ൌ 1, … ,  . Throughout the paper, ߝ௧  is a zero-mean and 

                                                 
1 In fact, there is an abuse of terminology here as “realized volatility” specifically refers to the square root 
of the sum of the squared intra-day returns, which is a biased and inconsistent estimator of the daily 
integrated volatility under the presence of micro-structure noise. However, to simplify notation and 
terminology, we will refer to any unbiased and consistent estimator as realized volatility. 
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uncorrelated process with finite, but not necessarily constant variance (Corsi, Mittnik, 

Pigorsch, and Pigorsch 2008). Corsi (2009) advocated the use of ܫ ൌ ሺ1,5,22ሻ . His 

specification builds on the HARCH model proposed by Müller, Dacorogna, Dave, Olsen, 

Pictet, and von Weizsaecker (1997). This type of specification captures long-range 

dependence by aggregating the log realized volatility over the different time scales in ܫ 

(daily, weekly, and monthly).  

 Hillebrand and Medeiros (2009) consider more lags than 1, 5, and 22, as well as, 

dummy variables for weekdays and macroeconomic announcements and past cumulated 

returns over different horizons as defined in (3).  Hence,   

௧ݕ ൌ ௧ࢊԢࢾ   ఐ,௧ିଵݕߚ
ఐאூ

  ೕ,௧ିଵݎߣ
ೕא

 ௧ߝ ൌ ௧ࢊԢࢾ  ௧ିଵ࢞Ԣࢼ  ௧ିଵ࢘Ԣࣅ  ௧, (7)ߝ

where ࢊ௧ is a vector of ݊ dummy variables as described above,  ࢞௧ିଵ is defined as in (6), 

௧ିଵ࢘ ൌ ቀݎభ,௧ିଵ, ڮ , ,௧ିଵቁݎ Ԣ ܭ , ൌ ൫ߢଵ, ,ଶߢ ڮ , ൯ߢ  is a set of ݍ  indices with 0 ൏ ଵߢ ൏

ଶߢ ൏ ڮ ൏ ߢ ൏ ∞  and ݅ ൌ 1, … , ߢ . The final set of variables in the model was 

determined by a bagging strategy as a flexible choice of the lag structure imposes high 

computational costs.  

 
3.2. The Nonlinear HAR Model 

 McAleer and Medeiros (2008) proposed an extension of the linear HAR model by 

incorporating smooth transitions. The resulting model is called the Multiple-Regime 

Smooth Transition HAR (HARST) model and is defined as  

௧ݕ ൌ ௧ࢊԢࢾ  ࢼ
ᇱ ௧ିଵ࢞   ࢼ

ᇱ࢞௧ିଵ݂ሾߛሺݖ௧ െ ܿሻሿ
ெ

ୀଵ

  ,௧ߝ
(8)

where ݖ௧ is a transition variable, ࢊ௧ and ߝ௧ are defined as before, and  
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݂ሾߛሺݖ௧ െ ܿሻሿ ൌ
1

1  ݁ିఊሺ௭ିሻ 
(9)

is the logistic function. The authors also presented a modeling cycle based on statistical 

arguments to select the set of explanatory variables as well as the number of regimes, ܯ. 

 Hillebrand and Medeiros (2009) put forward a nonlinear version of the HAR 

model based on neural networks (NN). Their specification is defined as follows: 

௧ݕ ൌ ࢼ
ᇱ ௧ିଵ࢝   ࢽ݂ሺߚ

ᇱ࢝௧ିଵሻ
ெ

ୀଵ

  ,௧ߝ
(10)

where ࢝௧ିଵ ൌ ሺࢊ௧
ᇱ , ௧ିଵ࢞

ᇱ , ௧ିଵ࢘
ᇱ ሻԢ,  ߝ௧  is defined as above, and ݂ሺࢽ

ᇱ࢝௧ିଵሻ is the logistic 

function as in (9). 

 As first discussed in Kuan and White (1994), the model defined by equation (10) 

may alternatively have a parametric or a nonparametric interpretation. In the parametric 

interpretation, the model can be viewed as a kind of smooth transition regression where 

the transition variable is an unknown linear combination of the explanatory variables in 

 ௧ିଵ (van Dijk, Teräsvirta, and Franses 2002). In this case, there is an optimal, fixed࢝

number ܯ of logistic transitions that can be understood as the number of limiting regimes 

(Trapletti, Leisch, and Hornik 2000, Medeiros and Veiga 2000, Medeiros, Teräsvirta, and 

Rech 2006). On the other hand, for ܯ ՜ ∞, the neural network model is a representation 

of any Borel-measurable function over a compact set (Hornik, Stinchombe, and White 

1989, Hornik, Stinchcombe, White, and Auer 1994, Chen and Shen 1998, Chen and 

White 1998, Chen, Racine, and Swanson 2001). For large ܯ, this representation suggests 

a nonparametric interpretation as series expansion, sometimes referred to as sieve-

approximator. In this paper, we adopt the nonparametric interpretation of the neural 



 10

network model and show that it approximates typical nonlinear behavior of realized 

volatility well.  

 As model (10) is, in principle, more flexible than model (8) we will consider only 

the NN-HAR model in our empirical experiment.  

 

4. Bagging Linear and Nonlinear HAR Models 

4.1.  What is Bagging? 

 The idea of bagging was introduced in Breiman (1996), studied more rigorously 

in Bühlmann and Yu (2002), and introduced to econometrics in Inoue and Kilian (2004). 

Bagging is motivated by the observation that in models where statistical decision rules 

are applied to choose from a set of predictors, such as significance in pre-tests, the set of 

selected regressors is data-dependent and random. Bootstrap replications of the raw data 

are used to re-evaluate the selection of predictors, to generate bootstrap replications of 

forecasts, and to average over these bootstrapped forecasts. It has been shown in a 

number of studies that bagging reduces the mean squared error of forecasts considerably 

by averaging over the randomness of variable selection (Inoue and Kilian 2008, Lee and 

Yang 2006). Applications include, among others, financial volatility (Huang and Lee 

2007, Hillebrand and Medeiros 2009), equity premium (Huang and Lee 2008), and 

employment data (Rapach and Strauss 2008). 
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4.2. Bagging the Linear HAR Model  

 Using the same notation as in Section 3, set ࢝௧ିଵ ൌ ሺࢊ௧
ᇱ , ௧ିଵ࢞

ᇱ , ௧ିଵ࢘
ᇱ ሻԢ א Թࡶ  , 

ܬ ൌ   ݍ  ݊, and write (7) as  

௧ݕ ൌ ௧ିଵ࢝ᇱࣂ  ௧. (11)ߝ

The bagging forecast for model (11) is constructed in steps as follows: 

 

PROPOSAL 1: Bagging the linear HAR model 

(1) Arrange the set of tuples ሺݕ௧, ,௧ିଵሻᇱ࢝ ݐ ൌ 1, … , ܶ, in the form of a matrix ࢄ of 

dimension ܶ ൈ  ;ܬ

(2) Construct bootstrap samples of the form ൛൫ݕሺሻଵ
כ , ሺሻ࢝

ᇱכ ൯, … , ൫ݕሺሻ்
כ , ሺሻ்ିଵ࢝

ᇱכ ൯ൟ, ݅ ൌ

1, … ,  with replacement, where the block size ࢄ by drawing blocks of ݉ rows of ,ܤ

݉ is chosen to capture possible dependence in the error term of the realized 

volatility series, such as conditional variance (“volatility of volatility”); 

(3) Compute the ݅th bootstrap one-step ahead forecast as 

ොሺሻ௧|௧ିଵݕ
כ ൌ ቊ

0 ݂݅ หݐห ൏ ܿ, ,݆
࢝ᇱࣂ ሺሻ௧ିଵ

כ′ ,݁ݏ݅ݓݎ݄݁ݐ
 

 where ݐ is the ݐ-statistic for the null hypothesis ԯ: ߠ ൌ ࢝ ,0 ሺሻ௧ିଵ
כ ൌ ௧ିଵ࢝כࡿ

כ  כࡿ ,

 is a diagonal selection matrix, which depends on the bootstrap sample, with the 

 ݆th diagonal element given by 

ܵ
כ ൌ ൜1 ݂݅ หݐห  ܿ, ,݆

0 ,݁ݏ݅ݓݎ݄݁ݐ
 

 ܿ is a pre-specified critical value of the test, and ࣂ is the ordinary least squares 

 estimator given by 
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ࣂ ൌ  ࢝ ሺሻ௧ିଵ
כ ࢝ ሺሻ௧ିଵ

כ′
்

௧ୀଵ

൩

ି

 ࢝ ሺሻ௧ିଵ
כ′ ௧ݕ

כ
்

௧ୀଵ

. 

 

(4) Compute the average forecast over the bootstrap samples: 

ො௧|௧ିଵݕ ൌ
1
ܤ  ොሺሻ௧|௧ିଵݕ

כ .


ୀଵ

 

 We choose a block size of ݉ ൌ ܶଵ/ଷ for the bootstrap procedure described above. 

This allows for dependence in the error term of equation (11). The critical value ܿ is set 

equal to 1.96, corresponding to a two-sided test at the 96% confidence level. 

 

4.3. Bagging  Nonlinear HAR Models 

 There are two main problems in specifying model (10): the selection of variables 

in the vector ࢞ and the number of hidden units ܯ. There are many approaches in the 

literature to tackle these problems. For example, when model (10) is seen as a variant of 

parametric smooth transition models, Medeiros, Teräsvirta, and Rech (2006) proposed a 

methodology based on statistical arguments to variable selection and determination of ܯ. 

However, this approach is not directly applicable here, as we advocate model (10) as a 

semi-parametric specification. On the other hand, as shown in Hillebrand and Medeiros 

(2009), Bayesian regularization (MacKay 1992) is a viable alternative, which is 

equivalent to penalized quasi-maximum likelihood. 

 In this paper, we do not specify neither the elements of ࢞ nor the number of 

hidden units, ܯ. In turn, in each bootstrap sample, we randomly select ܯ from a uniform 

distribution on the interval [0,20], and the elements of ࢞ are selected as the ones with 
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significant coefficients in the linear HAR case. The bagging procedure can be 

summarized as follows: 

 

PROPOSAL 2: Bagging the NN-HAR model 

(1) Repeat steps (1)  and (2) in Proposal 1. 

(2) For each bootstrap sample, first remove insignificant regressors by pre-testing as 

in step (3) of Proposal 1. Then, estimate the NN-HAR model randomly 

selecting ܯ from a uniform distribution on the interval [0,20]. Compute the ݅th 

bootstrap one-step ahead forecast and call it ݕොሺሻ௧|௧ିଵ
כ . 

(3) Compute the average forecast over the bootstrap samples:  

ො௧|௧ିଵݕ ൌ
1
ܤ  ොሺሻ௧|௧ିଵݕ

כ .


ୀଵ

 

5. Empirical Results 

We use high frequency tick-by-tick on S&P 500 futures from January 2, 1996 to March 

29, 2007 (2796 observations) and FTSE 100 futures from January 2, 1996 to December 

28, 2007 (3001 observations). In computing the daily realized volatilities, we employ the 

realized kerned estimator with the modified Tukey-Hanning kernel of BHLS (2008). As 

it is a standard practice in the literature, we focus on the logarithm of the daily realized 

volatilities. Figures 1 and 2 illustrate the data. The last 1000 observations are left out the 

estimation sample in order to evaluate the out-of-sample performance of different 

models. 

 In this paper we consider the following competing models: the standard 

heterogeneous autoregressive (HAR) model with average volatility over one, five, and 22 
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days as regressors (see equation (6)); the  flexible HAR model where cumulated returns 

over one to 200 days and average past volatility over one to 60 days are initially included 

as possible regressors; the neural network HAR (NN-HAR) model estimated with 

Bayesian regularization (BR) and the same set of regressors as the flexible HAR model; 

and finally, the NN-HAR model estimated by nonlinear least squares (LS). Bagging is 

applied to all models apart from the standard HAR specification.  

Figure 1. Upper panel: Daily returns for the S&P 500 index. Lower panel: Daily log realized 

volatility computed via the method described in BHLS (2008) and using the Tukey-Hanning 

kernel. We use high frequency tick-by-tick on S&P 500 futures from January 2, 1996 to March 

29, 2007. 
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Figure 2. Upper panel: Daily returns for the FTSE index. Lower panel: Daily log realized 

volatility computed via the method described in BHLS (2008) and using the Tukey-Hanning 

kernel. We use high frequency tick-by-tick on FTSE 100 futures from January 2, 1996 to 

December 28, 2007. 

 

The forecasting results are presented in Tables 1 and 2. Table 1 shows the root 

mean squared error (RMSE) and the mean absolute error (MAE) as well as the mean, the 

standard deviation, the maximum, and the minimum one-step-ahead forecast error for the 

four models considered in the empirical exercise. From the table it is clear that the 

flexible linear HAR model and the nonlinear HAR model estimated with Bayesian 

regularization (NN-HAR (BR)) are the two best models. However, the performance of 

the standard HAR specification is not much worse. On the other hand, the NN-HAR 
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model without Bayesian regularization seems to be the worst model among the four 

competing ones. The results are similar for the S&P 500 and the FTSE 100. 

Table 2 presents the p-value of the modified Diebold-Mariano test of equal predictive 

accuracy of different models with respect the benchmark standard HAR model. The test is 

applied to the squared errors as well as to the absolute errors. It is clear from the table that both 

the flexible linear HAR and the NN-HAR (BR) models have superior out-of-sample performance 

than the standard HAR model in the case of the S&P 500 index. For the FTSE 100, the NN-HAR 

(BR) model has a statistically superior performance than the standard HAR specification only 

when the absolute errors are considered.  

 
 
6. Conclusions 

In this paper we considered linear and nonlinear models to forecast daily realized 

volatility: the standard heterogeneous autoregressive (HAR) model with average 

volatility over one, five, and 22 days as regressors; the flexible HAR model where 

cumulated returns over one to 200 days and average past volatility over one to 60 days 

are initially included as possible regressors; the neural network HAR (NN-HAR) model 

estimated with Bayesian regularization (BR) and the same set of regressors as the flexible 

HAR model; and finally, the NN-HAR model estimated by nonlinear least squares (LS). 

Both the flexible HAR and the NN-HAR (BR) models outperformed the benchmark HAR 

model. The NN-HAR model estimated with nonlinear least squares was the worst model 

among all the alternatives considered. 
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Table 1. Forecasting Results: Main Statistics 

The table shows the root mean squared error (RMSE) and the mean absolute error (MAE) as well 

as the mean, the standard deviation, the maximum, and the minimum one-step-ahead forecast 

error for the following models: the standard heterogeneous autoregressive (HAR) model; the  

flexible HAR model where cumulated returns over one to 200 days and average past volatility 

over one to 60 days are initially included as possible regressors; the neural network HAR (NN-

HAR) model estimated with Bayesian regularization (BR) and the same set of regressors as the 

flexible HAR model; and the NN-HAR model estimated by nonlinear least squares (LS). Bagging 

is applied to all models, apart from the standard HAR specification. 

 

Model  RMSE MAE Mean Std. D. Max. Min. 
   

S&P 500 
 

Flexible HAR w/ bagging  0.228 0.180 -0.038 0.225 1.326 -0.853 

NN-HAR (BR) w/ bagging  0.229 0.179 -0.043 0.225 1.305 -0.865 

NN-HAR (LS) w/ bagging  0.247 0.195 -0.096 0.228 1.208 -0.870 

HAR (1,5,22) w/o bagging  0.237 0.186 -0.041 0.233 1.268 -0.896 

        
  FTSE 100 

 
Flexible HAR w/ bagging  0.264 0.198 -0.011 0.264 1.745 -0.900

NN-HAR (BR) w/ bagging  0.266 0.198 -0.015 0.266 1.720 -0.882

NN-HAR (LS) w/ bagging  0.292 0.224 -0.094 0.277 1.570 -1.000

HAR (1,5,22) w/o bagging  0.270 0.202 -0.016 0.268 1.694 -0.912

 
  



 18

Table 2. Forecasting Results: Diebold-Mariano Test 

The table shows the p-value of the modified Diebold-Mariano test of equal predictive accuracy of 

different models with respect the benchmark standard HAR model. The test is applied to the 

squared errors as well as to the absolute errors. The following models are considered : the  

flexible HAR model where cumulated returns over one to 200 days and average past volatility 

over one to 60 days are initially included as possible regressors; the neural network HAR (NN-

HAR) model estimated with Bayesian regularization (BR) and the same set of regressors as the 

flexible HAR model; and the NN-HAR model estimated by nonlinear least squares (LS). Bagging 

is applied to all models, apart from the benchmark standard HAR specification. 

 

Model  Squared Errors Absolute Errors 
   

S&P 500 
 

Flexible HAR w/ bagging  4.52e-5 1.36e-4 

NN-HAR (BR) w/ bagging  2.89e-4 3.23e-4 

NN-HAR (LS) w/ bagging  0.001 0.004 

   
FTSE 100 

 

Flexible HAR w/ bagging  0.011   0.006 

NN-HAR (BR) w/ bagging  0.144   0.016 

NN-HAR (LS) w/ bagging  5.68e-11   1.30e-10 
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