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Abstract

Bandit problems are pervasive in various fields of research and are also present in

several practical applications. Examples, including dynamic pricing and assortment

and the design of auctions and incentives, permeate a large number of sequential treat-

ment experiments. Different applications impose distinct levels of restrictions on viable

actions. Some favor diversity of outcomes, while others require harmful actions to be

closely monitored or mainly avoided. In this paper, we extend one of the most pop-

ular bandit solutions, the original εt-greedy heuristics, to high-dimensional contexts.

Moreover, we introduce a competing exploration mechanism that counts with searching

sets based on order statistics. We view our proposals as alternatives for cases where

pluralism is valued or, in the opposite direction, cases where the end-user should care-

fully tune the range of exploration of new actions. We find reasonable bounds for the

cumulative regret of a decaying εt-greedy heuristic in both cases, and we provide an

upper bound for the initialization phase that implies the regret bounds when order

statistics are considered to be at most equal but mostly better than the case when

random searching is the sole exploration mechanism. Additionally, we show that end-

users have sufficient flexibility to avoid harmful actions since any cardinality for the

higher-order statistics can be used to achieve stricter upper bound. In a simulation

exercise, we show that the algorithms proposed in this paper outperform simple and

adapted counterparts.

Keywords: Bandit, sequential treatment, high dimensions, LASSO, regret
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1 Introduction

In this paper, we combine contextual decaying εt-greedy heuristics, among the most popu-

lar bandit solutions, with high-dimensional setups. We propose two algorithms to address

different levels of restrictions regarding the exploration of new actions. Our framework is es-

pecially useful for situations where an agent must learn the best course of action to maximize

some reward through experience and the observation of a large pool of covariates.

A multiarmed bandit problem can be interpreted as a sequential treatment, where a

limited set of resources must be allocated between alternative choices to maximize utility.

The properties of the choices are not fully known at the time of allocation and may become

better understood as time passes, provided a learning rule with theoretical guarantees is

available. A particularly useful extension of the bandit problem is called the contextual

multiarmed bandit problem, where observed covariates yield important information to the

learning process in the sense that the supposed best policy may be predicted; see, for instance,

Auer (2003); Li et al. (2010); Langford and Zhang (2008); Agrawal and Goyal (2012).

Contextual multiarmed bandit problems have applications in various areas. For instance,

large online retailers must decide on real-time prices for products and differentiate among

distinct areas without complete demand information; see, for example, Dani et al. (2008) and

den Boer (2013). Arriving customers may take purchase decisions among offered products

based on maximizing their utility. If information on consumers’ utility is available, the seller

could learn which subset of products to offer (Sauré and Zeevi (2013)). Further, the reserve

price of auctions could be better designed to maximize revenue (Cesa-Bianchi et al. (2013)).

Mechanisms design in the case where agents may not know their true value functions but the

mechanism is repeated for multiple rounds can take advantage of accumulated experience

(Kandasamy et al. (2020)). Also, sequential experiments or programs, including public

policies (Tran-Thanh et al. (2010) devises an algorithm that consider costly policies), may

be assigned under the scope of learning problems. In this regard, excellent works can be

found in Kock and Thyrsgaard (2017), Kock et al. (2018) and Kock et al. (2020).
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1.1 Motivation and Comparison with the Literature

Designing a sequence of policies to minimize error is a difficult task and, for a considerable

period in the past, was also a computationally intractable goal. In this respect, several

heuristics with well-behaved properties have emerged in the literature, such as Thompson

sampling (Agrawal and Goyal, 2012; Russo and Van Roy, 2016), upper confidence bounds

(Dani et al., 2008; Abbasi-Yadkori et al., 2011) and greedy algorithms (Auer, 2003; Bastani

et al., 2017; Goldenshluger and Zeevi, 2013). In a very recent work, Chen et al. (2020)

established asymptotic normality in a ε-greedy contextual bandit.

Provided that a large pool of characteristics has been collected from the target population,

a sparse setup has the potential to catalyze the benefits of large information sets into strong

predictive power of what the rewards would be for a chosen action in a contextual bandit

framework. This possible superior performance translates directly into better exploitation

steps and, in our case, improved exploration.

Few papers consider high-dimensional bandit setups. These studies include Carpentier

and Munos (2012), Abbasi-Yadkori and D. Pál (2012), Deshpande and Montanari (2012),

Bouneffouf et al. (2017), Bastani and Bayati (2019), and Krishnamurthy and Athey (2020).

However, most of the previous papers either extend a version of the upper confidence bound

(UCB) algorithm to a sparse high-dimensional setup or put emphasis on exploitation-only

solutions.

Our contribution enriches the current set of high-dimensional algorithms by providing

solutions that consider distinct levels of restrictions in exploration. Consider, for example,

a recommendation system in which some accidental discoveries have a positive impact on

user experience. In this case, one of our algorithms can provide a better outcome than its

counterparts in the high-dimensional literature since it explores fully at random and not

based on some previously imputed restrictions.

The abovementioned solution favors diversity, which is clearly suitable for some appli-

cations. However, in many practical situations, exploration at random can be unethical,
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unfeasible, or harmful, for example, in medical trials, where an optimal dosage of a new

drug is to be determined. Therefore, we also provide a solution to these cases that leverages

the fact that nonharmful actions should belong to a very intuitive set comprising the most

promising actions based, for example, on the predicted output’s highest-order statistics.

Our work is related to Bastani and Bayati (2019). The studied algorithm, however,

gathers parameter information by forcing arms to be played at specific instants of time and

chooses the best action based on full sample estimation. This procedure belongs to the class

of exploitation-only algorithms in the sense that it always chooses the best predicted policy.

Since distinct practical applications dictate the boundaries and weights one should place on

exploration and exploitation, we view our algorithms as alternatives that extend the work

in Bastani and Bayati (2019) in the direction of greater exploration.

Krishnamurthy and Athey (2020) propose a variation of the traditional LinUCB algo-

rithm depicted in Li et al. (2010) to select personalized questions for surveys based on

observed responses. Regret properties are proved when ridge regression and elastic net are

used for parameter estimation. In general, UCB rules adhere to the principle that when it

comes to select nongreedy actions, it would be better to select the action according to its

potential of being optimal. Typically, this task is achieved through the construction of con-

fidence sets, which may favor some actions over others. Given the environment’s limitations,

the proposed methods provide greater diversity or, when required, greater flexibility to select

nonharmful actions.

1.2 Main Takeaways

We show that distinct levels of restrictions in the exploration of new actions can be settled by

using variations of the original multiarmed εt-greedy heuristic. Our contributions are twofold:

the extension of the εt-greedy heuristics to the high-dimensional context and its subsequent

refinement via the introduction of a competing exploration mechanism that counts with a

high-order statistics searching set.
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Specifically, the first contribution is suitable for applications with no restrictions on

exploration. In these cases, at each time, the algorithm selects a random action (exploration)

with probability εt, which is just the original εt-greedy rule. Despite of its simplicity, this rule

efficiently introduces diversity in outcomes. Our second contribution is designed for cases

with mild restrictions in exploration. That is, we construct, at each period, a set consisting

of the most promising actions based on the predicted output’s highest-order statistics. The

implicit assumption is that a promising action should not be harmful to the activity.

Although not mandatory, both algorithms are equipped with an initialization phase where

information about the parameters is gathered by attempting distinct actions. We show

that the cumulative regrets of both contextual εt-greedy algorithms are reasonably bounded,

implying that even in the high-dimensional setup, effective learning is achieved by employing

the aforementioned rules. We also provide an upper bound for the initialization phase that

implies regret bounds when order statistics are considered to be at most equal to or better

than the case when random search is the unique exploration mechanism. This is especially

important for cases when random exploration at its full extent is not advisable. Practitioners

can use this result to setup an acceptable initialization phase that guarantees that exploring

at a selective set of actions would yield better results.

In addition, we show that it is viable to pick any cardinality for the high-order statistics

set and still respect the limits established in this paper. This approach introduces flexibility,

as it is possible to choose the range of alternatives to explore. On the other hand, we show

that competition between searching mechanisms may not be optimal, as the dominance of

one or another should be considered as a function of the initialization phase. In a simulation

exercise, we show that the algorithms proposed in this paper outperform simple and adapted

(to the high-dimensional context) counterparts.

To the best of our knowledge, no previous works have specifically addressed a decaying

εt-greedy algorithm in this manner.
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1.3 Organization of the Paper

The rest of this paper is structured as follows. Section 2 establishes the framework and the

main assumptions for the regret analysis, while Section 3 depicts the proposed algorithms.

Section 4 exhibits the main theoretical results of the paper. Section 5 provides a sensitivity

analysis of the algorithms with relation to parameters set by the user, a comparison among

simple and adapted algorithms and suggestions for the application of our rules in two prac-

tical problems. Section 6 concludes this work. All proofs and auxiliary results are relegated

to the Appendix. Supplementary Material provides additional results.

1.4 Notation

Bold capital letters X represent matrices and small bold letters x represent vectors. ‖·‖ is

the vector norm, while # is the cardinality of a set. Matrices or vectors followed by subscript

or superscript parentheses denote specific elements. For example, X
(j)
kt is the j-th column

of matrix Xkt. Likewise, xt,(j) is the j-th scalar element of vector xt. Finally, 1{x∈X} is the

indicator function that takes a value of 1 when x ∈ X. Additional notation is presented

throughout the paper whenever necessary.

2 Setup and Assumptions

Contextual bandit problems are intrinsic to various fields of research. In this paper, we use

the nomenclature derived from the treatment effects literature such that terms as “arms”

and “rewards” may be replaced by “policies” and “treatment effects”, respectively.

Consider an institution, for example, a central planner or a firm, that offers a finite

sequential program. The planner has to choose, at each instant of time, the best possible

policy (arm) to implement, for example, a deterministic function of covariates to assign units

to the treated and nontreated groups. The goal is to set a sequence of policies to maximize

some measure of treatment effects (rewards).
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In many cases, sequential programs have inherent costs that may be enhanced by frequent

changes in the treatment assignment rules. Furthermore, even without costs, one may use

fairness arguments to rule out the possibility that changes in the program are so substantial

that they alter the program’s nature. In this case, participants would be in a position of a

total lack of knowledge as the next policy could be completely divergent from the previous

ones. Assumption 1 formalizes a more realistic case that will be our subject of study.

Assumption 1 (Policy Assumptions). i. Let (W , ‖·‖) be any normed vector space. The

planner has at its disposal a finite set of policies to be tested Wp ≡ {ω0, . . . ,ωw−1},

Wp ⊂ W, where ωk ∈ Rc and c is arbitrary.

ii. The planner starts from a pretty good idea of a reasonable initial policy ω0 and selects

alternatives inside the ball B(ω0, τ), provided that 0 ∈ B(ω0, τ).

Remark 1. We could relax the normed vector space requirement to any metric space in

general. For our purposes, it is imperative to compare policies that, provided a metric is

in place, are achievable in more complex spaces. Without loss of generality, we say that

ωk ∈ Rc because euclidean spaces are simple to work with. In this case, B(ω0, τ) = {ωk ∈

Rc| ‖ωk − ω0‖ ≤ τ}. As a simple example, wk could be a scalar chosen by the planner as a

cutoff for a regression discontinuity design. Units with covariates above the cutoff would be

assigned to the treated group, and those below the cutoff would not be treated. The finite set of

policies, its cardinality, #W = w, and the level of dissimilarity among policies, measured by

τ , directly depend on the degree of slackness in the environment. In most practical situations,

a large number of very unlikely policies is not a plausible option. However, we do not restrain

them in any manner. Furthermore, it is possible to connect Assumption 1 to the case in which

the planner may initially have a pretty good idea of a reasonable policy to employ but, for

example, may be interested in fine-tuning activities to improve the results. The requirement

that 0 ∈ B(ω0, τ) is easily satisfied for a standardized set of policies.

Let (Ω,F ,P) be a probability space. At an arbitrary time instant t ∈ T ≡ {1, 2, . . . , T},
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the planner observes covariates, e.g., individual characteristics of its target sample, as well as

the sequence of its past realizations {xt}tt=1 identically and independently distributed (iid)

from P. She also knows the past rewards1 {ykt}t−1
t=1, for all values of k as long as ωk have been

implemented before t. Then, at each time t, the planner must choose a policy ωk from W

to maximize some key variable (reward or some measure of treatment effect)2. The range of

ykt is a subset of Y ⊂ R, while that of xt is a subset of X ⊂ Rp, where p may grow with the

sample size. However, to simplify the notation, in the rest of this paper, we do not exhibit

this dependence (between p and T ) explicitly.

The connection between covariates and rewards is stated as follows:

Assumption 2 (Contextual Linear Bandit). There is a linear relationship between rewards

and covariates of the form:

ykt = β′kxt + εkt, (1)

where ykt is some measure of treatment effects at time t, as a result of the implementation of

policy k, conditional on the covariates xt (and all their past realizations) and an idiosyncratic

shock εkt. ∀k, βk belongs to the parametric space B ⊂ Rp. Furthermore:

i. ∀t ∈ T , |xt,(j)| ≤ θx, j ∈ {1, ..., p}.

ii. ∀k ∈ {0, ..., w−1}, t ∈ T , the sequence {εkt} is composed of independent centered random

variables with variance E(ε2i ) < σ2.

Remark 2. Assumption 2 restrains our setup to linear bandit problems. Rewards are policy-

/time-dependent in the sense that the dynamics of xt interfere with the level of reward.

However, depending on the chosen policy ωk, the mechanism (βk) that “links” covariates to

rewards is different. Moreover, in contrast to several papers that make specific distributional

assumptions concerning the covariates and the error term, we require only that covariates be

1The planner observes xt at each time t but does not yet know yt.
2For ease of notation, in our setup, yt is a scalar random variable, but the reader will recognize throughout

this paper that this choice is not restrictive. Multivariate versions are allowed.
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bounded in absolute terms. Regarding the sequence of errors, we only bound their variances.

Both assumptions are necessary to guarantee that instantaneous regrets (defined below) do

not have explosive behavior.

Clearly, two pieces of nomenclature have been used: policies chosen by the planner and

“mechanisms” through which these policies operate. Assumption 3 connects them:

Assumption 3 (Metric Spaces). There is an h-Lipschitz function hf : Rc → B

Remark 3. Assumption 3 is a restriction on the joint behavior of the two relevant metric

spaces we are working with, B and Rc. It is advisable to impose some healthy patterns to

avoid the possibility that small changes in mechanisms could result in substantial changes in

policies, which would not be expected in most practical situations. In the case considered by

Assumption 3 we have that dB(βk − βj) ≤ hdc(ωk − ωj), for h ∈ R+ the Lipschitz constant

and dc and dB, relevant metrics for the two spaces.

One of the most useful instruments to assess the effectiveness of bandit algorithms is the

regret function, which, in general, may be studied in its instantaneous or cumulative version.

Regret represents the difference (in a naive sense) between the expected reward obtained by

choosing an arbitrary policy and that obtained by picking the best policy. Clearly, the term

best policy does not refer to the absolute sense but the best conditional on the fact that it

belongs to the available set of policies. Definition 1 formalizes these concepts.

Definition 1. (Regret Functions) The instantaneous (rt) regret function of implementing

any policy ωk ∈ W at time t ∈ T , leading to the reward ykt, and the respective cumulative

(RT ) regret until time T are defined as:

rt = E
[

max
j∈{0,...,w−1}

(yjt − ykt)
]

and RT =
T−1∑
t=1

rt

Motivated by the high-dimensional context, we perform Lasso estimation in the following

sections. These estimators operate on a familiar and imperative assumption of sparsity, i.e.,
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that in the true model, not all covariates are important to explain a given dependent variable.

Regarding this aspect, we define the sparsity index in Definition 2 and impose the well-known

compatibility condition for random matrices in the Assumption 4, which is standard in the

high-dimensional literature.

Definition 2. (Sparsity Index) For any p > 0 and k ∈ {1, . . . , p}, define S0 ≡ {k|β0
k 6= 0}

and the sparsity index as s0 = #S0.

It is important to establish an additional piece of notation. Define βk[S0] ≡ βk1{k ∈ S0}

and βk[S
C
0 ] ≡ βk1{k /∈ S0}.

Assumption 4. (Compatibility Condition) For an arbitrary (n×p)-matrix X and ∀β ∈ Rp,

such that
∥∥β[SC0 ]

∥∥
1
≤ 3 ‖β[S0]‖1, for some S0, ∃φ0 >

√
32bs0 > 0, with b ≥ max

j,k
|(Σ̂)j,k −

(Σ)j,k| such that:

‖β[S0]‖2
1 ≤

s0β
′Σβ

φ2
0

,

where Σ̂ and Σ are the empirical and population covariance matrices of X, respectively.

Finally, we impose a bounding condition for the density of covariates near a decision

boundary, as in Tsybakov (2004), Goldenshluger and Zeevi (2013) and Bastani and Bayati

(2019), among others.

Assumption 5. (Margin Condition) For k ∈ R+, ∃Cm ∈ R+, Cm ≤ φ2
0

8θxs0λ
, such that for

i, j ∈ {0, . . . , w − 1}, P [x′t(βi − βi) ≤ k] ≤ Cmk.

Remark 4. Assumption 5 is related to the behavior of the distribution of xt “near” a deci-

sion boundary. In these cases, there is a possibility for rewards to be so similar that small

deviations in estimation procedures could lead to suboptimal policies being selected by the al-

gorithms. With this assumption, we impose that even in small balls of similar policies, there

is a strictly positive probability that rewards (x′tβi) for a given policy ωi are strictly greater

than those of any other policy ωk. That is, there is no doubt about what policy is the best.

In contrast to other papers, we establish an upper bound for the constant Cm as a function

of the intrinsic parameters of the problem.
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3 Algorithms and Estimation Procedures

Choosing any policy at each instant of time generates the well-known problem of bandit

feedback, which in general terms, relates to the fact that a planner following an arbitrary

algorithm obtains feedback for only the chosen policy. Other possible rewards are simply not

observable and the best possible one, at each time t, remains unknown to the planner. This

intrinsic characteristic can lead to incorrect premature conclusions, for example, in cases

when a policy had not been frequently tested in the past. In this case, it may be labeled

as a suboptimal policy, while in fact, it simply did not have sufficient opportunity to prove

itself. Additionally, bandit feedback poses serious problems for the evaluation of different

policies and comparison of algorithms using real data sets. If a target policy, different than

the implemented one, is to be evaluated, difficulties arise, leading to alternatives such as

counterfactual estimation (Agarwal et al., 2017).

Another somewhat different feature, but equally vital for the efficiency of bandit algo-

rithms, relates to the way that policies are selected. After some time, the planner has already

formed her opinion about the implemented policies. Then, a crucial decision must be made:

exploit and use the most profitable policy, in a predicted sense in the case of contextual mul-

tiarmed bandits, or explore and implement a new one, taking advantage of the fact that in a

changing world, the past may not reflect the future, thereby preventing the algorithm from

becoming stuck on suboptimal policies (best only in the past). This exploitation-exploration

trade-off is well-known in the bandit literature and dictates the properties of the regret

function; see, for example, Auer (2003) and Langford and Zhang (2008).

In general terms, all bandit algorithms take the abovementioned problems into consid-

eration while pursuing their main goal of a bounded well-behaved regret function. The

εt-greedy heuristic is no different. It is important, however, to properly review since the

proposed algorithms in this paper reflect and extend its ideas.

Define the action function I : T → W , such that for each t ∈ T , I(t) = ωk represents the

policy selected by the planner. Then, Definition 3 presents the εt-greedy algorithm, which is
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the same one established in Auer et al. (2002).

Definition 3 (εt-Greedy Heuristic). Let c > 0 and 0 < d < 1. Let w ∈ N+, w > 1 and

define the sequence εt ∈ (0, 1], t ∈ T , by εt ≡ min
{

1, cw
d2t

}
. Then, the εt-greedy algorithm is

Algorithm 1: εt-Greedy Heuristic

input parameters: c, d, w

for t ∈ T do

εt ←− min
{

1, cw
d2t

}
;

qt ←− U(0, 1);

if qt ≤ εt then

at ←− U(0, w);

I(t)←− ωat;

else

bt ←− arg max
j∈{0,...,w−1}

1
t−1

∑t−1
i=1 yji;

I(t)←− ωbt;

end

end

The εt-greedy heuristic gives random weights to the exploration-exploitation trade-off.

That is, with probability εt, it explores selecting a random policy in the set W and, with

probability 1− εt it exploits selecting the best empirical policy (in the average sense).

Note the total absence of covariates, which makes Definition 3 appropriate for multi-

armed bandits (without context). To extend this framework to cases where covariates play

an important role, we expand the ideas in Bastani et al. (2017) to consider not only the

probability exploration-exploitation trade-off but also to allow for high dimensions.

Define the partition of the set T , {T (l), T (lc)}, where T (l) ≡ {t ∈ T |t ≤ l} and T (lc) is

the respective complement. l ∈ N+, l > 1 is the length of the initialization phase, and we

require that l = vw, which implies that every policy in W is implemented v times in this

phase. Definition 4 formalizes the contextual lasso greedy (CLG) algorithm.
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Definition 4 (CLG Algorithm). Let c > 0, 0 < d < 1 and εt be defined in the same way as

in Definition 3. Let w ∈ N+, w > 1 and v ∈ N+. Then, the CLG algorithm is:

Algorithm 2: CLG Algorithm

input parameters: c, d, w,v

Inicialization;

for i ∈ {1, 2, ..., v} do

for j ∈ {1, 2, ..., w} do

I(t)←− ωj;

Update β̂j;

end

end

Exploration-Exploitation;

for t ∈ T (lc) do

εt ←− min
{

1, cw
d2t

}
; qt ←− U(0, 1);

if t ≤ εt then

at ←− U(0, w); I(t)←− ωat;

Update β̂at;

else

bt ←− arg max
j∈{0,...,w−1}

ŷjt; I(t)←− ωbt;

Update β̂bt;

end

end

The CLG algorithm is a natural expansion of the εt-greedy solution to contextual settings.

It is equipped with an initialization phase, and the exploited selected policy is given by the

best estimated/predicted reward.

An important part of CLG is that the planner is required to update β̂k only when

I(t) = ωk. Define Akt ≡ {t ∈ T |I(t) = ωk}, and let nkt ≡ #Akt be the number of times an
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arbitrary policy ωk has been tested until time t. Let Xkt be an nkt×p matrix containing all

unit characteristics until time t, provided that t ∈ Akt. ykt and εkt are the nkt × 1 rewards

and error terms, respectively. Then, we update β̂k as:

β̂k = arg min
β∈B

1

nkt
‖ykt −Xktβ‖2

2 + λ ‖β‖1 , (2)

where λ > 0 is a penalty parameter.

Finally, without changing the exploration-exploitation probabilistic nature in the CLG

algorithm, we augment it with an alternative option. Recall the usual definition of order

statistics, which for the case of estimated rewards, take the form:

ŷ(1:nkt)t ≡ min
j∈{1,...,nkt}

ŷjt ≤ ŷ(2:nkt)t ≤ · · · ≤ ŷ(nkt:nkt)t ≡ max
j∈{1,...,nkt}

ŷjt

Let H(κt)
kt ≡ {ŷkt|ŷkt ≥ ŷ(nkt−κt:nkt)t} be the set of the κt higher-order statistics considered

as new options for exploration, such that ∀t > vw, κt = #H(κt)
kt . κt ∈ (1, v/2] to avoid

extremes. In fact, if for some t, κt = 1, the overall effect would be to increase the CLG

weight to exploit the policy with the best estimated reward, and we would again be under

the scope of the CLG algorithm. On the other hand, since the higher-order statistics set is

important only after the initialization phase, requiring that κt ≤ v/2 implies that κt ≤ nkt/2

as, for t > vw, nkt ≥ v. In this sense, the upper bound on κt serves the purpose of adherence

to the term “highest”-order statistics for the algorithm.

Definition 5 presents the CLG algorithm coupled with a κ-higher-order statistics search

set (CLG-κHOS algorithm). The only difference between the CLG and the CLG-κHOS

algorithms is the degree of randomness in the exploration phase. Note that we do not

impose any choice of st and κt.

Definition 5 (CLG-κHOS Algorithm). Let c > 0, 0 < d < 1 and εt be defined as in

Definition 3. Let w ∈ N+, w > 1, v ∈ N+, κt ∈ N+, 1 < κt ≤ v/2 and st ∈ (0, 1). Then, the
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CLG-κHOS algorithm is:

Algorithm 3: CLG-κHOS algorithm

input parameters: c, d, w, v, κt, st

Inicialization;

for i ∈ {1, 2, ..., v} do

for j ∈ {1, 2, ..., w} do

I(t)←− ωj;

Update β̂j;

end

end

Exploration-Exploitation;

for t ∈ T (lc) do

εt ←− min
{

1, cw
d2t

}
; qt ←− U(0, 1); rt ←− U(0, 1);

if qt ≤ εt then

if rt ≤ st then

Build H(κt)
kt ;

ut ←− U(0, κt); I(t)←− ωut in H(κt)
kt ;

Update β̂ut;

else

at ←− U(0, w); I(t)←− ωat;

Update β̂at;

end

else

bt ←− arg max
j∈{0,...,w−1}

ŷjt; I(t)←− ωbt;

Update β̂bt;

end

end

15



4 Finite Sample Properties of Regret Functions

Theorem 1 is the main result of the paper, as it provides the bounds on the cumulative regret

functions for CLG and CLG-κHOS. In the case of this last algorithm, we use the fact that,

by the results of Theorem 2, optimal choices for st ≡ s may not be time dependent.

Theorem 1 (Cumulative Regret of both CLG and CLG-κHOS algorithms). Provided that

the conditions required by Lemmas 3, 4, 5 and Theorem 2 are satisfied, the cumulative regret

until time T of both the CLG (Rclg
t ) and CLG-κHOS (Rhos

t ) algorithms is bounded as:

Rclg
T−1 ≤ 2wθxhτ

{
v + v log

(
T − 1

vw

)
+

16Cmθxs0λ
[
(T − 1)3/2 − (vw + 1)3/2

]
3φ2

0

√
vw

}

= O
{

max
[
log(T ), s0λT

3/2
]}

Rhos
T−1 ≤ Rclg

T−1 + 2wθxhτ

[
vs log

(
T − 1

vw

)(
w exp

{
−2

v
[v (1− Pβ)−X ]2

}
− 1

)]
= O

{
max

[
log(T ), s0λT

3/2
]}
,

where Pβ, X , s and Cm are provided in Lemmas 2, 5, Theorem 2 and Assumption 5, respec-

tively.

Note that both cumulative regrets provided in Theorem 1 respect the same growth order.

This fact is a recognition that the second term of Rhos
T−1 does not grow at a faster rate than

the first one.

Remark 5. The suggestions provided in the literature for the growth rate of λ and s0 could

provide more intuitive bounds. For example, Carvalho et al. (2018) comment that in the

Gaussian case, it is common to assume λ = O

(√
log p
T

)
and s0 log p√

T
= o(1). Consequently, in

such cases, s0λ
√

log p is o(1), implying that, with high probability, s0λ overrides the growth

in p, which grows with T . In summary, assumptions like these proactively counteract the

T 3/2 growth rate.

Theorem 2 (Flexibility and Dominance of CLG-κHOS algorithm). Provided that the condi-

tions required by Lemmas 4 and 5 are satisfied, the least upper bound for the specification of
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the algorithm described in Definition 5 does not depend on κt, and for any sufficiently small

δ > 0, it is optimal to set st ≡ s = (1− δ)1{vw<8X 2} + δ1{vw≥8X 2}. Moreover, ∀vw < 8X 2:

max
t∈T ∩{t|t>vw}

(rhost ) < max
t∈T ∩{t|t>vw}

(rclgt ),

where rclgt is provided in Lemma 4 and rhost and X in Lemma 5.

Theorem 2 shows that a not too large initialization phase, vw < 8X 2, guarantees that

the bound on the CLGκ-HOS is at most equal to but mostly better than that of the CLG

algorithm. Also, concerning the best choice of st and κt in terms of achieving the best/least

possible upper bounds, one can see that ∀t > vw the bounds on the regrets do not depend

on κt, while st should be set close to 0 or close to 1 and not necessarily be time-varying, if

the initialization period is higher or lower than 8X 2, respectively. That is, the least upper

bound is achievable when there are exploration at random competes and into a higher-

order statistics searching set of any cardinality less than or equal to v/2 (by our imposition

in Section 2). Moreover, competition between searching mechanisms apparently does not

converge to optimum bounds since as a function of the length of the initialization period,

one mechanism dominates the other.

Remark 6. Theorem 2 represents our additional contribution to the high-dimensional ban-

dit literature by providing supplemental guarantees for practitioners with mild restrictions

in exploration of new actions. In these cases, limitations imposed by practical applications

naturally bound exploration to be confined in a restrictive, possibly time-varying, set of ac-

tions. In these cases, it would be preferable to have some flexibility in the action screening

process without impacting the algorithm’s properties. Theorem 2 can be helpful in this regard

since it provides the flexibility to explore groups of different sizes according to the users’

needs and, additionally, it suggests that this approach would be the best course of action for

a reasonable duration of the initialization phase. That is, it would not only be advisable (by

operational limitations in real applications) but better to look into a set of promising actions

than otherwise.
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5 Simulations and Sensitivity Analysis

There are two types of variables in the CLG-κHOS algorithm: those that the planner can

only observe and those the she can control and serve as inputs to the algorithm. In this

section, we provide a sensitivity analysis for the set of variables in the last group. The

results corroborate our theoretical findings.

We evaluate the sensitivity of the algorithm with respect to changes in the following

inputs: (1) the number of available policies, w; (2) the weight attributed for the confinement

of exploration to a higher-order statistics set, st; and (3) the cardinality of the higher-order

statistics set, κt. We focus on the CLG-κHOS algorithm since the CLG algorithm should

have similar behavior, at least for changes in w.3 Moreover, we also compare the CLG and

the CLG-κHOS algorithms with a few related alternatives.

General Setup: We set T = 2000; covariates xt are generated from a truncated Gaus-

sian distribution such that Assumption 2.i translates to |xt,(j)| ≤ 1, ∀t. The dimension of

xt is p = 200, and the sparsity index is s0 = 5. εkt ∼ N(0, 0.05), ∀k ∈ {0, . . . , w − 1} and

∀t. We consider v = 30 as the number of times that each policy is implemented in the

initialization phase.4 Each policy ωk has its own mechanism βk drawn independently from a

U(0, 1) probability distribution. The simulation is repeated nsim = 50 times, and the results

are presented as the average regret. That is, the instantaneous regret at a specific time t is

the average of 50 simulated instantaneous regrets at this time.

Sensitivity to w: We set w ∈ {5, 10, 15}, κt ≡ κ = 2 and st ≡ s = 1/w.

Cumulative regret is increasing in w, as the greater the number of policies tested, the

more difficult it is for the algorithm to select the best policy. Another implication specific to

our formulation is that the higher the value of w is, the longer the initialization phase, which

means that the logarithmic growth of the exploration vs. exploitation phase bound would

3Recall that the CLG algorithm does not count with st or κt.
4We do not explicitly test the sensitivity of the algorithm to v since, given our specification, the variable

affects only the initialization phase and the precision of the mechanism’s estimates. However, we tested the
sensitivity to w.
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take longer to operate and the levels of cumulative regret would be higher. Furthermore,

recall that in relatively longer initialization phases, we do not have guarantees that the

bound on CLGκ-HOS is lower than that on CLG, highlighting the importance of w. These

arguments are illustrated in Figure 1.

Sensitivity to st: Figure 2a illustrates the proof of Theorem 2. That is, given values

for w and κt, with all else being constant, the upper bound of the CLGκ-HOS algorithm is

increasing with st, provided that vw ≥ 8X 2. In this setting, it is optimal to reduce the weight

of searching the higher-order statistics set, which is why we chose small values for st. Theorem

2 suggests a small δ > 0 in this case. Figure 2b is just an amplification of Figure 2a for

t > vw. Simulations are conducted for w = 10, κt ≡ κ = 2 and st ≡ s ∈ {0.5/w, 1/w, 1.5/w}.

Sensitivity to κt: Figures 3a and 3b present the sensitivity of the algorithm to values

of κt ≡ κ ∈ {0.2w, 0.3w, 0.5w}, where w = 10 and st ≡ s = 0.8κt/w. The results are also a

reflection of Theorem 2 with respect to κt since the regrets are not κt-dependent. The first

panel comprises all time steps, and the second is for t > vw.

The cumulative regret is by far the most important measure in problems like that studied

in this paper. However, it is instructive to investigate other measures. Figure 4a presents the

difference in the policies selected by CLGκ-HOS and the best policies at each t, exemplified

by a simulation for w = 5, κt ≡ κ = 2 and st ≡ s = 1/w. The main feature to observe in

this figure is that, compared to the initialization period, the exploration-exploitation phase

makes fewer mistakes.

Figure 4b exhibits the average (across simulations and across the time horizon) frequency

of hits for the CLG-κHOS algorithm for varying parameters. For 50 simulations and 2000

time steps, the worst specification achieves 90% (because w is large) correct policies selected

on average, while the best one reaches 95%.
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5.1 Comparison to Related and Adapted Algorithms

Comparison of bandit algorithms using real data sets is challenging considering the bandit

feedback problems already mentioned in this paper. Therefore, we employ a simulation

exercise in which we compare the cumulative regret of the CLG-κHOS algorithm to the

regret of the CLG and three additional algorithms: OLS-CG, OLS-CG-κHOS and Expfirst.

As these algorithms are, in general, adapted for the high-dimensional case, we briefly discuss

the last three. The general setup assumed in the beginning of this section is expanded

to consider w = 10, st ≡ s = 0.5 and κt ≡ κ = w/2. The same initialization phase is

implemented for all algorithms.

OLS-CG and OLG-CG-κHOS: These algorithms are the OLS-contextual greedy and

the OLS-contextual greedy with κ-higher-order statistics algorithms. Both are counterparts

of CLG and CLG-κHOS that use OLS as the estimation methodology to update the estimated

mechanisms β̂k when ωk is selected. In a high-dimensional sparse context, we would expect

lasso to outperform a poorly defined OLS estimator. Inclusion of these algorithms in the

comparison set serves to compare the estimation performance and its implications on the

regret function.

ExpFirst: This is a kind of exploitation-only algorithm. The initialization phase is the

same as that in the CLG-κHOS, that is, estimation of βk for selected policies is the same

as in the high-dimensional case and lasso is employed. However, this algorithm does not

explore. After initialization, it always selects the policy that presented the minimum regret

in the initialization. In a different setting, provided that some new assumptions are in place,

Bastani et al. (2017) have shown that exploitation-only algorithms can achieve logarithmic

growth in the OLS-estimation context.

Figure 5a shows that the CLG-κHOS algorithm largely outperforms its peers, except for

the CLG, in which case the improvement in cumulative regret is more modest. Figure 5b

amplifies Figure 5a and presents the comparison only for these two algorithms. In these

simulations, we use κt ≡ κ = 2, w = 10 and st ≡ s = 1/w.
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5.2 Two Potential Practical Applications

5.2.1 Recommendation Systems

Recommendation systems are used to match consumers to firms in an environment where

preferences are fully or partially unknown. Preferences and priorities must be learned from

available features related to both the users and the products being purchased. In general,

businesses can benefit from a recommendation system, provided that a large set of costumers’

characteristics is available. In these cases, algorithms can be more cost-efficient than hu-

mans, given the complexity and the size of the problem. Sectors such as those involved in

e-commerce, retail, banking and media can potentially leverage their revenue if a reason-

able recommendation system is in place. A report from Mckinsey in 2013 states that the

recommendation feature contributed to 35% and 23.7% growth in revenue for Amazon and

BestBuy, respectively. The report also stated that 75% of video consumption and 60% of

views on web services Netflix and YouTube, respectively, are due to recommendations. 5

A simple example would comprise several vendors (e.g., restaurants) and consumers.

Available data related to rating, geographical distance from vendors to consumers, prepara-

tion time, delivery time, gender, and promotions could be used by the algorithms to learn

how consumers build their preferences. In other words, the problem can be viewed as mak-

ing acceptable online predictions of with which vendors consumers are willing to establish a

commercial relationship.

5.2.2 Job Application Screening

In a very recent work, Li et al. (2020) use, perhaps for the first time, a bandit rule to select

individual job applicants for an interview, which is an important part of the studied firm

hiring process. The data they use suggest that the vast majority of applicants are not even

considered for interviews. The whole process is costly because interview slots are scarce

5For more details, refer to https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-
keep-up-with-consumers.
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and, historically, supervised learning algorithms may introduce some human bias in the

recruitment process by selecting groups with proven track records rather than taking risks

on nontraditional applicants. That is, there is not a proper exploitation-exploration trade-off,

and good actions may never be taken by the firm. To remedy this fact, the authors introduce

a variant of the upper confidence bound algorithm as a way to introduce exploration.

Ultimately, firms would like to select quality and ability from the several resumes they

receive based on a history of hired professionals. Considering that this information is intrin-

sically unobservable, a high-dimensional context could be fruitful in the exploitation phase

to alleviate any bias that might arise. However, although there is a clear applicability of our

algorithms to this problem, more work should be done to consider a broader set of actions

(arms) than the authors considered in their work. The two actions considered, to invite or

not to invite for an interview, are not directly applicable to our setup.

6 Concluding Remarks

In this paper, we contribute to reducing the gap related to the lack of research related to con-

textual bandits in high-dimensional scenarios. To this end, we extend a historically popular

multiarmed bandit heuristic, the εt-greedy heuristic, to consider not only high-dimensional

contexts but also a competing exploration mechanism. To the best of our knowledge, no

previous work has specifically addressed the εt-greedy algorithm in this manner.

For a decreasing εt-greedy multiarmed bandit, we find that adding a high-dimensional

context to the original setting does not substantially jeopardize the original results, except

that in our case, regret not only grows reasonably with time but also depends on the covariate

dimensions, as the latter grows with the former in high-dimensional problems.

Specifically, the consideration of a higher-order statistics searching set as an alternative

to random exploration also leads to reasonable upper bounds on the time horizon. As by-

products, we show that the regret bounds when order statistics are considered are at most
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equal to but mostly better than the case when random searching is the sole exploration

mechanism, provided that the initialization phase is not excessively long. Furthermore, we

show that in order to achieve the least upper bound for the cumulative regret function of the

CLGκ-HOS algorithm, one should not exert effort designing the cardinality of the higher-

order statistics searching set. In a simulation exercise, we show that the algorithms proposed

in this paper outperform simple and adapted counterparts.

A Auxiliary Lemmas

Lemmas 1 and 2 establish the properties for the Lasso estimation.

Lemma 1 (Finite-Sample Properties of β̂k). Define:

Gkt :=

{
2

nkt
max
1≤j≤p

∣∣∣ε′ktX(j)
kt

∣∣∣ ≤ a

}
If β̂k is the solution of (2), Assumption 4 holds. Furthermore, provided that λ ≥ 2a, on Gkt,

it is true that: ∥∥∥β̂k − βk∥∥∥
1
≤

∥∥∥β̂k − βk∥∥∥2

Σ̂kt

λ
+

4λs0

φ2
0

,

where
∥∥∥β̂k − βk∥∥∥2

Σ̂kt
≡ (β̂k − βk)′Σ̂kt(β̂k − βk) and Σ̂kt ≡ 1

nkt
X ′ktXkt.

Proof. See the Supplementary Material.

Lemma 2 (Finite-Sample Properties of β̂k - Continuation). Given that Assumptions 2 and

4 and the conditions of Lemma 1 are satisfied, then:

P
(∥∥∥β̂k − βk∥∥∥

1
>

4s0λ

φ2
0

)
≤ log(2p)

nkt

{
C1

nkt
+ C2 + C3

[
log(2p)

nkt

]−1/2
}

=: Pβ, where

C1 := C1(σ, θx, λ) =
128σ2θ2

x

λ2
, C2 := C2(s0, θx, φ0) =

32s0θ
2
x

φ2
0

, andC3 := C3(s0, θx, φ0) =
√

2C2.
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Proof. Provided that λ ≥ 2a, on Gkt, that 32bs0
φ2

0
≤ 1, where b ≥ max

i,j
|(Σ̂kt)i,j − (Σkt)i,j|,

Lemma 1 indicates that
∥∥∥β̂k − βk∥∥∥

1
≤ 4s0λ

φ2
0

. Then,

P
(∥∥∥β̂k − βk∥∥∥

1
>

4s0λ

φ2
0

)
= P

[(
Gkt ∩max

i,j
|Σ̂kt,(i,j) − Σkt,(i,j)| ≤ b

)c]
= P(Gckt ∪max

i,j
|Σ̂kt,(i,j) − Σkt,(i,j)| > b)

≤ P(Gckt) + P(max
i,j
|Σ̂kt,(i,j) − Σkt,(i,j)| > b)

= P
(

2

nkt
max
1≤j≤p

|ε′ktX
(j)
kt | >

λ

2

)
+ P(max

i,j
|Σ̂kt,(i,j) − Σkt,(i,j)| > b)

(3)

where the second equality is De Morgan’s law and the first inequality is an application of

the union bound.

For the first term of (3), given that {max
1≤j≤p

|ε′ktX
(j)
kt |}, j = 1, . . . , p is a sequence of positive

random variables, for r > 0, we employ the Markov inequality to obtain:

P
(

2

nkt
max
1≤j≤p

∣∣∣ε′ktX(j)
kt

∣∣∣ > λ

2

)
≤ 4r

E
(

max
1≤j≤p

|ε′ktX
(j)
kt |r
)

(nktλ)r

= 4r
E
(

max
1≤j≤p

∣∣∑nkt
i=1 εkt,(i)xkt,(i,j)/nkt

∣∣r)
nr−1
kt λ

r
.

(4)

Since (4) holds for any value of r > 0, take r = 2. Therefore, by Lemma 7:

16

E
(

max
1≤j≤p

∣∣∑nkt
i=1 εkt,(i)xkt,(i,j)/nkt

∣∣2)
nktλ2

≤ 128

n3
ktλ

2
σ2 log(2p)

nkt∑
i=1

(
max
1≤j≤p

|xkt,(i,j)|
)2

≤ 128

(nktλ)2
σ2 log(2p)θ2

x

(5)

For the second term in (3), we also have that {max
i,j
|Σ̂kt,(i,j) − Σkt,(i,j)|} is a sequence

of positive random variables. Then, by the Markov inequality, for r > 0, provided that

24



32bs0
φ2

0
≤ 1:

P
(

max
i,j

∣∣∣Σ̂kt,(i,j) − Σkt,(i,j)

∣∣∣ > b

)
≤ P

(
max
i,j

∣∣∣Σ̂kt,(i,j) − Σkt,(i,j)

∣∣∣ > φ2
0

32s0

)
≤ 32s0

φ2
0

E
(

max
i,j

∣∣∣Σ̂kt,(i,j) − Σkt,(i,j)

∣∣∣) . (6)

Recall that Σ̂kt := 1
nkt
X ′ktXkt. Then, its elements are given by:

Σ̂kt,(i,j) =
1

nkt

nkt∑
b=1

X2
kt,(i,b).

Define the function γ : R → R, such that for a bounded random variable x ∈ R,

γ(x) = x2−E(x2)

[max(x)]2
. Then, equation (6) can be rewritten as:

32s0

φ2
0

E
(

max
i,j

∣∣∣Σ̂kt,(i,j) − Σkt,(i,j)

∣∣∣) =
32s0

φ2
0

E

[
max
i,j

∣∣∣∣∣ 1

nkt

nkt∑
b=1

θ2
xγ(Xkt,(i,b))

∣∣∣∣∣
]
. (7)

Now, note that for m = 2, 3, 4, . . ., such that m ≤ 1 + log(p):

E
[
γ
(
Xkt,(i,b)

)]
=

1

θ2
x

[
E
(
X2
kt,(i,b)

)
− E

(
X2
kt,(i,b)

)]
= 0

1

nkt

nkt∑
i=1

E
[∣∣γ(Xkt,(i,b))

∣∣m] ≤ 1

nktθ2m
x

nkt∑
i=1

E
[∣∣X2

kt,(i,b) − E
(
X2
kt,(i,b)

)∣∣m] ≤ θ2m
x

θ2m
x

= 1.

Then, the conditions of Lemma 8 are satisfied, and we can apply it to (7) to find that:

32s0

φ2
0

E

(
max
i,j

∣∣∣∣∣ 1

nkt

nkt∑
b=1

θ2
xγ(Xkt,(i,b))

∣∣∣∣∣
)
≤ 32s0θ

2
x

φ2
0

 log(2p)

nkt
+

√
2 log(2p)

nkt

 . (8)

Merging (5) and (8), we have:

P
(∥∥∥β̂k − βk∥∥∥

1
>

4s0λ

φ2
0

)
≤ 128

(nktλ)2
σ2 log(2p)θ2

x +
32s0θ

2
x

φ2
0

 log(2p)

nkt
+

√
2 log(2p)

nkt


=

log(2p)

nkt

{
C1

nkt
+ C2 + C3

[
log(2p)

nkt

]−1/2
}

=: Pβ,

where C1 = 128σ2θ2
x

λ2 , C2 = 32s0θ2
x

φ2
0

and C3 =
√

2C2.

Regarding the regret behavior of the CLG and the CLGκ-HOS algorithms, Lemma 3

presents the cumulative regret immediately after the initialization phase (t = vw), which is

common to both algorithms. On the other hand, Lemmas 4 and 5 exhibit the results for the
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instantaneous regret.

Lemma 3 (Initialization Regret). Given the duration l = vw of the initialization phase,

v, w ∈ N+, w > 1 and provided that Assumptions 1 to 3 are satisfied, the cumulative regret

of the CLG and CLG-κHOS algorithms in the initialization phase (Rl) is bounded as Rl ≤

2vwθxhτ .

Proof. The cumulative regret is established in Definition (1). The worst case is to select

wrong policies for all t ≤ vw. Define jt ∈ {0, . . . , w− 1} ≡ arg max
j∈{0,...,w−1}

yjt to be the index that

leads to the best rewards for each t ≤ vw. Then, the regret for the initialization phase is

Rl =
∑vw

t=1 E(yjtt − ykt), where in the worst case k 6= jt, ∀ t ≤ vw. By Assumption 2

Rl =
vw∑
t=1

E
[
x′t(βjt − βk)

]
. (9)

The right-hand side of equation (9) can be bounded in absolute terms as |x′t(βjt − βk)| ≤

max
1≤j≤p

|xt,(j)|
∥∥βjt − βk∥∥1

.

Using Assumptions 1.ii, 2.i and 3, we find that Rl ≤
∑vw

t=1 2θxhτ ≤ 2vwθxhτ since by

the subadditivity of any metric, and for {ωk,ωj,ωz} ∈ W , ‖ωk − ωj‖1 ≤ ‖ωj − ωz‖1 +

‖ωk − ωz‖1. Taking ωz = ω0 then, ‖ωk − ωj‖1 ≤ 2τ .

Lemma 4 (Instantaneous Regret of the CLG algorithm). Provided that λ ≥ 2a, on Git, that

32bs0
φ2

0
≤ 1, where b ≥ max

j,k
|(Σ̂it)j,k − (Σit)j,k|, for t > vw, v, w ∈ N+, w > 1, and given that

Assumptions 1 to 5 hold, the instantaneous regret of the CLG algorithm (rclgt ) is bounded as

rclgt ≤ 2wθxhτP
clg
it , where

P clg
it ≤

v

t
+
(

1− vw

t

) 8Cmθxs0λ

φ2
0

and Cm is established in Assumption 5.

Proof. For t > vw, define jt in the same way as in the proof of Lemma 3 and consider the

definition of I(t) in Section 3. Then, by the law of total expectation, the instantaneous
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regret rclgt of the CLG algorithm is:

rclgt =
w−1∑
i=0

E
[
x′t(βjt − βi)|I(t) = ωi

]
P [I(t) = ωi] . (10)

In the CLG algorithm, we have that:

P [I(t) = ωi] =
εt
w

+ (1− εt)P
(
x′tβ̂i ≥ x′tβ̂j

)
, ∀j ∈ {0, . . . , w − 1}. (11)

From the properties of the maximum of a sequence of random variables, we have the

following fact applied to the last term of (11):

P
(

max
j∈{0,...,w−1}

x′tβ̂j ≤ x′tβ̂i
)

= P

(
w−1⋂
j=0

x′tβ̂j ≤ x′tβ̂i

)

≤ P
(
x′tβ̂j ≤ x′tβ̂i

)
for some j ∈ {0, . . . , w − 1},

since for any sequence of sets Ai, i = 1, . . . , n, the event {
⋂n
i=1Ai} is a subset of every Ai.

Note that

P
(
x′tβ̂j ≤ x′tβ̂i

)
= P

(
x′tβ̂j − x′tβj + x′tβj − x′tβ̂i + x′tβi − x′tβi ≤ 0

)
= P

[
x′t(βj − βi) ≤ x′t(βj − β̂j) + x′t(β̂i − βi)

] (12)

Bounding the term x′t(β̂i − βi) − x′t(β̂j − βj) in absolute value and using the triangle

inequality, we find that:

|x′t(β̂i − βi − β̂j + βj)| ≤
(

max
1≤j≤p

|xt,(j)|
)∥∥∥β̂i − βi − β̂j + βj

∥∥∥
1

≤
(

max
1≤j≤p

|xt,(j)|
)(∥∥∥β̂i − βi∥∥∥

1
+
∥∥∥βj − β̂j∥∥∥

1

)
≤ θx

(∥∥∥β̂i − βi∥∥∥
1

+
∥∥∥βj − β̂j∥∥∥

1

)
Therefore,

P
(
x′tβ̂j ≤ x′tβ̂i

)
≤ P

[
x′t(βj − βi) ≤ θx

(∥∥∥β̂i − βi∥∥∥
1

+
∥∥∥βj − β̂j∥∥∥

1

)]
(13)

Provided that λ ≥ 2a, on Git, that 32bs0
φ2

0
≤ 1, where b ≥ max

j,k
|(Σ̂it)j,k − (Σit)j,k|, Lemma

1 indicates that for an arbitrary i ∈ {0, . . . , w − 1},
∥∥∥β̂i − βi∥∥∥

1
≤ 4s0λ

φ2
0

. Using this fact in
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equation 13 and Assumption 5, we find that:

P
(
x′tβ̂j ≤ x′tβ̂i

)
≤ P

[
x′t(βi − βj) ≤

8θxs0λ

φ2
0

]
≤ 8Cmθxs0λ

φ2
0

(14)

Inserting the result obtained in equation (14) into equation (11), we find that:

P [I(t) = ωi] ≤
εt
w

+ (1− εt)
8Cmθxs0λ

φ2
0

(15)

Recall that the suggestion for εt contained in Auer et al. (2002) is for εt = cw
d2t

, for c > 0,

0 < d < 1 and t ≥ cw
d2 . Since equation (15) is valid for t > vw it suffices to take c, d, such

that c/d2 = v. In this case:

P [I(t) = ωi] ≤
v

t
+
(

1− vw

t

) 8Cmθxs0λ

φ2
0

=: P clg
it

Finally, the instantaneous regret can be bounded as rclgt ≤ 2θxhτ
∑w−1

i=0 P [I(t) = ωi] ≤

2wθxhτP
clg
it .

Lemma 5 (Instantaneous Regret of the CLG-κHOS algorithm). Provided that λ ≥ 2a, on

Git, that 32bs0
φ2

0
≤ 1, where b ≥ max

j,k
|(Σ̂it)j,k − (Σit)j,k|. Provided that X ≤ v(1− Pβ), where

X :=
4θxs0λ

φ2
0

+ 2θxhτ.

For t > vw, v, w ∈ N+, w > 1, and given that Assumptions 1–4 hold, the instantaneous

regret of the CLG-κHOS algorithm (rhost ) is bounded as: rhost ≤ 2wθxhτ
(
P hos
it − εtst

w
+ P clg

it

)
,

where

P hos
it := εtst exp

{
−2

v

[
(v (1− Pβ)−X )2]} . (16)

Pβ is the result of Lemma 2 and P clg
it is provided in Lemma 4.

Proof. For t > vw, define jt in the same way as in the proof of Lemma 3 and consider the

definition of I(t) in Section 3. Then, by the law of total expectation, the instantaneous

regret rhost of the CLG-κHOS algorithm is:

rhost =
w−1∑
i=0

E
[
x′t(βjt − βi)|I(t) = ωi

]
P [I(t) = ωi] (17)
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In the CLG-κHOS algorithm, we have that ∀j ∈ {0, . . . , w − 1}:

P [I(t) = ωi] =
εtst
κt

P(x′tβ̂i ∈ H
(κt)
it ) +

1

w
[εt(1− st)] + (1− εt)P(x′tβ̂i ≥ x′tβ̂j). (18)

The last term of the right side of equation (18) is the same as last term of P [I(t) = ωi] in

the CLG algorithm. Regarding the first term of equation (18), by the definition of H(κt)
kt

(Section 3):

P(x′tβ̂i ∈ H
(κt)
it ) = P

(
nkt⋃

j=nkt−κt

{ŷit ≥ ŷ(j:nkt)t}

)
(19)

Employing the union bound and noting that restricted to the set of κt higher-order

statistics, the event {ŷit ≥ ŷ(nkt−κt:nkt)t} ⊂ {ŷit ≥ ŷ(j:nkt)t}, j ∈ {nkt−κt, . . . , nkt} is the most

probable to occur since ŷ(nkt−κt:nkt)t is the lowest possible order statistic; then:

P

(
nkt⋃

j=nkt−κt

{ŷit ≥ ŷ(j:nkt)t}

)
≤ κtP

(
ŷit ≥ ŷ(nkt−κt:nkt)t

)
. (20)

From Assumptions 1–3, it is clear that |x′tβ̂i| ≤ θx

∥∥∥β̂i − βi∥∥∥
1

+ θx ‖βi‖1. Moreover, on

Git ∩max
j,k
|Σ̂it,(j,k) −Σit,(j,k)| ≤ b, Lemma 1 indicates that

|x′tβ̂i| ≤
4θxs0λ

φ2
0

+ 2θxhτ =: X

Then, equation (20) leads to:

κtP(ŷit ≥ ŷ(nkt−κt:nkt)t) ≤ κtP
(
ŷ(nkt−κt:nkt)t ≤ X

)
≤ κt

nkt∑
l=nkt−κt

(
nkt
l

)
[P(ŷit ≤ X )]l []1− P(ŷit ≤ X )]nkt−l ,

(21)

since, as an intermediate-order statistic, ŷ(nkt−κt:nkt)t ∼ Bin[nkt, pit(y)], for pit(y) ≡ P(ŷit ≤

y), which in this case, we can take y = X .

For X ≤ nktpit(X ), we can use Lemma 9 to bound equation (21) as:

κtP
(
ŷ(nkt−κt:nkt)t ≤ X

)
≤ κt exp

[
−2

(nktpit(X )−X )2

nkt

]
.
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Note that

pit(X ) := P(x′tβ̂i ≤ X ) ≥ P
(∥∥∥β̂i − βi∥∥∥

1
≤ 4s0λ

φ2
0

+ 2hτ

)
≥ P

(∥∥∥β̂i − βi∥∥∥
1
≤ 4s0λ

φ2
0

)
≥ 1− Pβ,

the solution of which has already been established in Lemma 2. Then,

κt exp

[
−2

(nktpit (X )−X )2

nkt

]
≤ κt exp

[
−2

(nkt(1− Pβ)−X )2

nkt

]
(22)

Also, the first derivative of the right-hand side of equation (22) is negative with respect

to nkt. To see this, note that:

f ′(nkt) = κt exp

[
−2

(nktpit(X )−X )2

nkt

]

×

{
−2

[
2(nktpit(X )−X )pit(X )nkt

n2
kt

− (nktpit(X )−X )2

n2
kt

]}

= κt exp

[
−2

(nktpit(X )−X )2

nkt

] [
−2

(
n2
ktp

2
it(X )−X 2

n2
kt

)]
≤ 0,

(23)

where the last inequality uses the condition that X ≤ nktpit(X ).

Therefore, for t > vw, X ≤ v(1−Pβ) is sufficient to replace the above requisite of Lemma

9. Moreover, as the right-hand side of equation (22) is nonincreasing in nkt and pit(X ), we

can restate Lemma 9 as:

P(x′tβ̂i ∈ H
(κt)
it ) ≤ κt exp

{
−2

v
[v (1− Pβ)−X ]2

}
Define P hos

it := εtst
kt

P(x′tβ̂i ∈ H
(κt)
it ) and the instantaneous regret of the CLG-κHOS

algorithm, equation (17), can be bounded as: rhost ≤ 2wθxhτ
(
P hos
it − εtst

w
+ P clg

it

)
.

Note from Lemmas 3, 4 and 5 that all bounds are increasing with θx, τ and w. The

intuition behind this fact is clear since the larger the level of dissimilarity among policies or

the larger the number of policies to be tested is, the greater the difficulty for the algorithm

to select the right policy.
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B Proof of Theorem 1

Provided that the conditions required by Lemmas 3, 4, and 5 and Theorem 2 are satisfied,

the cumulative regret until time T of both the CLG (Rclg
t ) and CLG-κHOS (Rhos

t ) algorithms

is bounded as:

Rclg
T−1 ≤ 2wθxhτ

{
v + v log

(
T − 1

vw

)
+

16Cmθxs0λ
[
(T − 1)3/2 − (vw + 1)3/2

]
3φ2

0

√
vw

}

= O
{

max
[
log(T ), s0λT

3/2
]}

Rhos
T−1 ≤ Rclg

T−1 + 2wθxhτ

[
vs log

(
T − 1

vw

)(
w exp

{
−2

v
[v (1− Pβ)−X ]2

}
− 1

)]
= O

{
max

[
log(T ), s0λT

3/2
]}
,

where Pβ, X , s and Cm are provided in Lemmas 2 and 5, Theorem 2 and Assumption 5.

Proof. For t ≤ vw, the cumulative regrets of both algorithms are given by Lemma 3. For t >

vw, since 1/t and 1−1/t are obviously decreasing and increasing functions of t, respectively,

we use Lemmas 10 and 11 in the Supplementary Material to obtain that

Rclg
T−1,t>vw ≤2wθxhτ

T−1∑
t=vw+1

P clg
it

≤ 2wθxhτ
T−1∑

t=vw+1

v

t
+
(

1− vw

t

) 8Cmθxs0λ

φ2
0

≤ 2wθxhτ

{
v log

(
T − 1

vw

)
+

16Cmθxs0λ[(T − 1)3/2 − (vw + 1)3/2]

3φ2
0

√
vw

}
= O{max[log(T ), s0λT

3/2]}.

Therefore, the total cumulative regret for the CLG until time T is:

Rclg
T−1 ≤ 2wθxhτ

{
v + v log

(
T − 1

vw

)
+

16Cmθxs0λ[(T − 1)3/2 − (vw + 1)3/2]

3φ2
0

√
vw

}
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For the CLG-κHOS algorithm, from 5:

Rhos
T−1,t>vw ≤2wθxhτ

T−1∑
t=vw+1

(
P hos
it −

εtst
w

+ P clg
it

)
≤

Rclg
T−1,t>vw + 2wθxhτ

T−1∑
t=vw+1

vwst
t

(
exp

{
−2

v
[v (1− Pβ)−X ]2

})
− vst

t

From the results in Theorem 2, we recognize that the optimal st is not time-dependent,

and we use s from now on, referring to this optimal choice. Then, we find that:

Rhos
T−1,t>vw ≤R

clg
T−1,t>vw + 2wθxhτ

T−1∑
t=vw+1

vws

t
exp

{
−2

v

[
v (1− Pβ)−X

]2
}
− vs

t
≤

Rclg
T−1,t>vw + 2wθxhτ

[
vws log

(
T − 1

vw

)(
exp

{
−2

v
[v (1− Pβ)−X ]2

})
−

vs log

(
T − 1

vw

)]
Finally, the total cumulative regret for the CLG until time T is:

Rhos
T−1 ≤R

clg
T−1 + 2wθxhτ

[
vs log

(
T − 1

vw

)(
w exp

{
−2

v

[
[v (1− Pβ)−X ]2

}
− 1

)]
= O{max[log(T ), s0λT

3/2]}.

Provided that the conditions of Theorem 2 hold:

w exp

{
−2

v
[v (1− Pβ)−X ]2

}
< 0

and Rhos
T−1 as a whole does not grow at a higher rate than Rclg

T−1 itself.

C Proof of Theorem 2

Provided that the conditions required by Lemmas 4 and 5 are satisfied, the least upper bound

for the specification of the algorithm described in Definition 5 does not depend on κt and,

for any sufficiently small δ > 0, it is optimal to set st ≡ s = (1− δ)1{vw<8X 2} + δ1{vw≥8X 2}.

Moreover, ∀vw < 8X 2:

max
t∈T ∩{t|t>vw}

(rhost ) < max
t∈T ∩{t|t>vw}

(rclgt ),
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where rclgt is provided in Lemma 4 and rhost and X in Lemma 5.

Proof. For the second part of the theorem, note from the results of Lemmas 4 and 5 that:

rhost − rclgt ≤ 2wθxhτ
(
P hos
it −

εtst
w

)
= 2wθxhτεtst

[
1

κt
P(x′t ∈ H

(κt)
it )− 1

w

]
,

since 2wθxhτεtst > 0. It is sufficient for our result that:

w < exp

{
2

v
[v (1− Pβ)−X ]2

}
,

which is guaranteed when:

vw < 2 [v (1− Pβ)−X ]2 , (24)

since for any a ≥ 0, a < ea.

Note that the discriminant of (24) is given by:

∆ = w2 − 8wX (1− Pβ),

which is negative when w < 8X (1− Pβ), meaning that 2 [v (1− Pβ)−X ]2 − vw has no real

roots and is always positive.

For the proof of this part to be completed, we recall that the conditions required by

Lemma 5 must be satisfied. In this case, 1− Pβ ≥ X
v

For the first part, we know that

rhost ≤2wθxhτ
(
P hos
it −

εtst
w

+ P clg
it

)
= 2wθxhτεtst

[
1

κt
P(x′t ∈ H

(κt)
it )− 1

w

]
+ 2wθxhτP

clg
it

≤ 2wθxhτεtst

(
exp

{
−2

v
[v (1− Pβ)−X ]2

}
− 1

w

)
+ 2wθxhτP

clg
it

(25)

Trivially, one can observe that none of the terms in inequality (25) depend on κt. Regard-

ing st, it is optimal to set the highest st possible when vw < 8X 2, provided that st ∈ (0, 1),

since in this case, according to the results of the second part of this theorem, we have that

1
κt
P
(
x′t ∈ H

(κt)
it

)
− 1

w
< 0, which completes the proof.
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Figure 1: Comparison of Cumulative Regrets of the CLG-κHOS algorithm for values

of w ∈ {5, 10, 15}, st ≡ s = 0.5 and κt ≡ κ = w/2.
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(a) Comparison of Cumulative Regrets of the CLG-κHOS algo-
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(b) Comparison of Cumulative Regrets of the CLG-κHOS al-

gorithm, computed from t = vw + 1 to t = T , for values of

st ≡ s ∈ {0.25, 0.5, 0.75, 1}, κt ≡ κ = w/2 and w = 10.

Figure 2: Sensitivity of CLG-κHOS algorithm to st.
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(a) Comparison of Cumulative Regrets of the CLG-κHOS algo-

rithm for values of κt ≡ κ ∈ {0.2w, 0.3w, 0.5w}, where w = 10

and st ≡ s = 0.8κt/w.
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rithm, computed from t = vw + 1 to t = T , for values of κt ≡
κ ∈ {0.2w, 0.3w, 0.5w}, where w = 10 and st ≡ s = 0.8κt/w.

Figure 3: Sensitivity of CLG-κHOS algorithm to κt.
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Figure 4: Differences between selected and best policies and average hits for different specifications.
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Supplementary Material

Online Action Learning in High Dimensions: A
New Exploration Rule for Contextual

εt-Greedy Heuristics

Cláudio Flores and Marcelo C. Medeiros

S.1 Auxiliary Results

S.1.1 Proof of Lemma 1

Proof. This proof has been already provided in other papers, such as Carvalho et al. (2018).
For the sake of completeness, we provide the main steps of the proof, even though it is a
well-known result.

In equation (2), if β̂k is the minimum of the optimization problem, then it is true that

1

nkt

∥∥∥ykt −Xktβ̂k

∥∥∥2

2
+ λ

∥∥∥β̂k∥∥∥
1
≤ 1

nkt
‖ykt −Xktβk‖

2
2 + λ ‖βk‖1 .

Using Assumption 2, we can replace ykt in the above expression to obtain the basic
inequality (see Bühlmann and van de Geer (2011) page 103):

1

nkt

∥∥∥Xkt(βk − β̂k) + εkt

∥∥∥2

2
+ λ

∥∥∥β̂k∥∥∥
1
≤ 1

nkt
‖εkt‖2

2 + λ ‖βk‖1 ⇐⇒

1

nkt

∥∥∥Xkt(β̂k − βk)
∥∥∥2

2
+ λ

∥∥∥β̂k∥∥∥
1
≤ 2

nkt
ε′ktXkt(β̂k − βk) + λ ‖βk‖1

(S.1)

Define
∥∥∥β̂k − βk∥∥∥2

Σ̂kt
≡ (β̂k−βk)′Σ̂kt(β̂k−βk), and the same for

∥∥∥β̂k − βk∥∥∥2

Σkt
replacing

Σ̂kt for Σkt, where Σkt := E[X ′ktXkt] and Σ̂kt := 1
nkt
X ′ktXkt.

The first term on the right side of (S.1) can be bounded in absolute terms as:

2

nkt
|ε′ktXkt(β̂k − βk)| ≤
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|ε′ktX
(j)
kt |
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.

On Gkt, we have that∥∥∥β̂k − βk∥∥∥2

Σ̂kt
+ λ

∥∥∥β̂k∥∥∥
1
≤ a

∥∥∥β̂k − βk∥∥∥
1

+ λ ‖βk‖1 (S.2)
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Using our previous definitions (see Section 2) for βk[S0] and βk[S
c
0] and the respective

counterparts for the estimators, by the triangle inequality of the left-hand side of equation
(S.2), we have that:∥∥∥β̂k∥∥∥

1
=
∥∥∥β̂k[S0]

∥∥∥
1

+
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1
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∥∥∥(β̂k[S0]− βk[S0])
∥∥∥

1
+
∥∥∥β̂k[Sc0]
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1

Using this result in (S.2) and the fact that
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1
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(
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By Assumption 4, we have that:∥∥∥β̂k − βk∥∥∥2
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(S.3)

Recall that Assumption 4 also requires that max
i,j
|(Σ̂kt)i,j − (Σkt)i,j| ≤ b. Then, using

Lemma 6, provided that 32bs0
φ2

0
≤ 1, we have that

∥∥∥β̂k − βk∥∥∥
Σkt
≤
√

2
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. Substi-

tuting in (S.3):∥∥∥β̂k − βk∥∥∥2
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Since λ ≥ 2a, a > 0, multiplying the last expression by 2 and using this fact and that
4vu ≤ u2 + 4v2, we have:

∥∥∥β̂k − βk∥∥∥
1
≤
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(S.4)

Lemma 6. Suppose that the Σ0-compatibility condition holds for the set S with cardinality
s with compatibility constant φΣ0(S) and that ‖Σ1 −Σ0‖∞ ≤ λ̃, where

32λ̃s

φ2
Σ0

(S)
≤ 1.

Then, for the set S, the Σ1-compatibility condition holds as well, with φ2
Σ1

(S) ≥ φ2
Σ0

(S)/2.

Proof. See Corollary 6.8 in Bühlmann and van de Geer (2011)

Lemma 7. For arbitrary n and p, consider independent centered random variables ε1, . . . , εn,

2



such that ∀ i, there is a σ2 that bounds the variance as E (ε2i ) ≤ σ2. Moreover, let {xi,j : i =
1, . . . , n, j = 1, . . . , p} be such that for i = 1, . . . , n, there is a Ki := max

1≤j≤p
|xi,j| such that

E

max
1≤j≤p

∣∣∣∣∣
n∑
i=1

εixi,j
n

∣∣∣∣∣
2
 ≤ σ2

[
8 log(2p)

n

](∑n
i=1 K

2
i

n

)

Proof. See Lemma 14.24 in Bühlmann and van de Geer (2011)

Lemma 8. Let Z1, . . . , Zn be independent random variables and γ1, . . . , γp be real-valued
functions satisfied for j = 1, . . . , p,

E[γj(Zi)] = 0

1

n

n∑
i=1

E[|γj(Zi)|m] ≤ m!

2
Km−2

for K > 0 and m ≤ 1 + log(p) (easily satisfied for large p). Then,

E

[
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1≤j≤p

∣∣∣∣∣ 1n
n∑
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γj(Zi)

∣∣∣∣∣
m]
≤

[
K log(2p)

n
+

√
2 log(2p)

n

]m
.

Proof. See Lemma 14.12 in Bühlmann and van de Geer (2011)

Lemma 9. Let X ∼ Bin(n, p). For k ≤ np:

P(X ≤ k) ≤ exp

[
−2(np− k)2

n

]
Proof. This is an application of Höffding’s inequality to random variables that follow a
binomial distribution. For more details, see Lemma 7.3 of Lin and Bai (2011)

Lemma 10. If f is a monotone decreasing function and g is a monotone increasing function,
both integrable on the range [r − 1, s], then:

s∑
t=r

f(t) ≤
∫ s

r−1

f(t)dt and
s∑
t=r

g(t) ≤
∫ s

r

g(t)dt

Proof. This is a well-known fact for monotone functions linked to left and right Riemann
sums.

Lemma 11. For a, t ∈ N+ and a < t: 1− a
t
<
√

t
a
.

Proof. Since t > a: a(t2 + a2) < t(t2 + 2a2).
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Dividing both sides by at2 > 0:

at2 − 2a2t+ a3 − t3

at2
< 0.

In other terms:

1− 2a

t
+
a2

t2
<
t

a
,

which concludes the proof.
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