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REGULARIZED ESTIMATION OF HIGH-DIMENSIONAL VECTOR
AUTOREGRESSIONS WITH WEAKLY DEPENDENT INNOVATIONS

RICARDO P. MASINI, MARCELO C. MEDEIROS, AND EDUARDO F. MENDES

Abstract. There has been considerable advance in understanding the proper-
ties of sparse regularization procedures in high-dimensional models. In time
series context, it is mostly restricted to Gaussian autoregressions or mixing
sequences. We study oracle properties of LASSO estimation of weakly sparse
vector-autoregressive models with heavy tailed, weakly dependent innovations
with virtually no assumption on the conditional heteroskedasticity. In contrast
to current literature, our innovation process satisfy an L1 mixingale type con-
dition on the centered conditional covariance matrices. This condition covers
L1-NED sequences and strong (α-) mixing sequences as particular examples.
From a modeling perspective, it covers several multivariate-GARCH specifica-
tions, such as the BEKK model, and other factor stochastic volatility specifica-
tions that were ruled out by assumption in previous studies.
JEL: C32, C55, C58.
Keywords: high-dimensional time series, LASSO, VAR, mixing.

1. Introduction

Modeling multivariate time series data is an important and vibrant area of
research. Applications range from economics and finance, as in Sims (1980),
Bauer and Vornik (2011), Chiriac and Voev (2011), or Ramey (2016), to air pol-
lution and ecological studies (Hoek et al., 2013; Ensor et al., 2013; Schwein-
berger et al., 2017). Among alternatives, the Vector Autoregressive (VAR) model
is certainly one of the most successful in modeling temporal evolution of vec-
tors, networks, and matrices. See Lütkepohl (1991) or Wilson et al. (2015) for
comprehensive textbook introductions.

The advances in data collection and storage have created data sets with large
numbers of time series (Big Data ), where the number of model parameters to be
estimated may exceed the number of available data observations. A common
approach to dealing with high-dimensional data is to impose additional struc-
ture in the form of (approximate) sparsity and estimate the parameters by some
shrinkage method. Examples of estimation techniques range from Bayesian
estimation with “spike-and-slab” priors to sparsity-inducing shrinkage, such
as the least absolute and shrinkage estimator (LASSO) and its many exten-
sions. See Miranda-Agrippino and Ricco (2019) for a nice survey on Bayesian
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VARs or Kock et al. (2020) for a review on penalized regressions applied to
time-series models.

1.1. Our Contributions. In this paper we study non-asymptotic properties of
high-dimensional VAR models and their parameter estimates using equation-
wise (row-wise node-wise) LASSO. We show that, with high probability, esti-
mated and population parameter vectors are close to each other in the Eu-
clidean norm and discuss restrictions on the rate which the number of pa-
rameters can increase as the sample size diverges.

The importance of our results relies on the fact that our non-asymptotic
guarantees serve as a fundamental ingredient for the derivation of asymptotic
properties of penalized estimators in high-dimensional VAR models. In partic-
ular, our results apply with minimal restrictions on the conditional variance
model, allowing, for instance, large-dimensional multivariate GARCH models.
Moreover, auxiliary results proved in this paper are of independent interested
and can, for instance, be used to derive finite bounds for other type of pe-
nalization such as group/structured lasso, elastic-net, SCAD or non-convex
penalties.

The data are assumed to be generated from a covariance-stationary and
weakly sparse VAR model, where the innovations are martingale difference
with sub-Weibull tails and conditional covariance matrix satisfying a L1 mixin-
gale assumption. An important feature is that the resulting process {yt} is
not necessarily mixing and we avoid mixing assumptions at all in this paper,
which can be notoriously difficult to show. Nevertheless, it follows that our
model contemplate strong mixing innovations as a particular case.

These conditions contemplate VAR models with conditional heteroskedastic-
ity as in Bauwens et al. (2006); Boussama et al. (2011) or stochastic volatility
as in Chib et al. (2009).

1.2. Literature review. Some consistency results on model estimation and
selection of high-dimensional VAR processes were obtained by Song and Bickel
(2011), though under much stronger assumptions, such as Gaussianity. Loh
and Wainwright (2012) and Basu and Michailidis (2015) developed power-
ful concentration inequalities that enabled them to establish consistency un-
der weaker conditions and prove that these conditions hold with high prob-
ability. In particular, Basu and Michailidis (2015) established consistency of
l1-penalized least squares and maximum likelihood estimators of the coeffi-
cients of high-dimensional Gaussian VAR processes and related the estimation
and prediction error to the complex dependence structure of VAR processes.
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Other estimation approaches, including Bayesian approaches, are discussed
by Davis et al. (2016). Miao et al. (2019) proposed a factor-augmented large
dimensional VAR and studied finite sample properties and provide estimation
results. However, they assume independent and identically distributed er-
rors. More recently, Wong et al. (2020) derived finite-sample guarantees for
the LASSO in a misspecified VAR model. Authors assume the series is either
β-mixing process with sub-Weibull marginal distributions or α-mixing Gauss-
ian processes.

1.3. Organization of the Paper. The paper is organized as follows. In Section
2 we define the model and the main assumptions in the paper. In Section 3 we
discuss examples of applications of our results. The theoretical results are pre-
sented in Section 4, while in Section 5 we provide a discussion of our findings
and conclude the paper. All technical proofs are relegated to the Appendix.

1.4. Notation. Throughout the paper we use the following notation. For a
vector b = (b1, ..., bk)

′ ∈ Rk and p ∈ [1,∞], |b|p denotes its lp norm, i.e. |b|p =

(
∑k

i=1 |bi|p)1/p for p ∈ [1,∞) and |b|∞ = max1≤i≤k |bi|. We also define |b|0 =
∑k

i=1 I(bi 6=
0). For a random variable X, ‖X‖p = (E|X|p)1/p for p ∈ [1,∞) and ‖X‖∞ =

sup{a : Pr(|X| ≥ a) = 0}. For a m × n matrix A with elements aij, we denote
|||A|||1 = max1≤j≤n

∑m
i=1 |aij|, |||A|||∞ = max1≤i≤m

∑n
j=1 |aij|, the induced l∞ and l1

norms respectively, and the maximum elementwise norm |||A|||max = maxi,j |aij|.
Also Λmin(A) and Λmax(A) denotes the minimum and maximum eigenvalues of
the matrix A, respectively.

2. Model setup and Assumptions

Let {yt = (yt,1, ..., yt,n)′} be a vector stochastic process defined in some fixed
probability space taking values on Rn given by

(1) yt = A1yt−1 + · · ·+Apyt−p + ut,

where ut = (ut,1, ..., ut,n)′ is a zero-mean vector of innovations and A1, . . . ,Ap,
are n × n parameter matrices. The dimension n ≡ nT and order p ≡ pT of the
process are allowed to increase with the number of observations T . Write the
vector-autoregressive (VAR) process (1) using its first-order representation:

(2) ỹt = F T ỹt−1 + ũt,
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where ỹt = (y′1, ...,y
′
p−1)′, ũt = (u′t,0

′, ...,0′)′, and

F T =


A1 A2 · · · Ap−1 Ap

In 0n · · · 0n 0n

0n In 0n 0n
... . . . ... ...

0n 0n In 0

 .

Consider now the following assumptions.

Assumption (A1). All roots of the reverse characteristic polynomial A(z) = In −∑p
i=1Ajz

j lie outside the unit disk and there exist c̄Φ > 0, cφ > 0 and 0 < γ1 ≤ 1

such that

(3) max
δ=1,...,n

∞∑
k=m

|φk,δ|1 ≤ c̄Φe
−cφmγ1 ,

where Φk := J ′F k
TJ = (φk,1, ..., φk,n)′ for all n and p, F T denote the companion

matrix and J = (In,0n, ...,0n)′.

Assumption (A2). The sequence {ut} is zero-mean, covariance stationary, mar-
tingale difference process with respect to its natural filtration {Ft}. The largest
and smallest eigenvalues of Σ := E(u1u

′
1) are bounded away from 0 and ∞ re-

spectively, uniformly in T ∈ N. Furthermore, for all b1,b2 ∈ {v ∈ Rn : |v|1 ≤ 1},

max
t∈N

E |E[b′1(utu
′
t −Σ)b2|Ft−m]| ≤ a1e

−a2mγ2 ,

for some a1, a2 > 0 and 0 < γ2 ≤ 1.

Assumption (A3). For all b ∈ {v ∈ Rn : |v|1 ≤ 1}, maxt∈N Pr(|b′ut| > x) ≤ 2e−|x/cα|
α

for some α > 0,0 < cα <∞, and all 0 < x <∞.

Assumption (A1) requires that the VAR process is stable and admits an
infinite-order vector moving average, VMA(∞), representation for all n and p

as

(4) yt =
∞∑
i=0

J ′F i
TJut−i =

∞∑
i=0

Φiut−i.

Furthermore, the coefficients of the MA(∞) representations of each {yi,t}, i =

1, .., n, are absolutely summable with exponentially decaying rate. This condi-
tion is satisfied in standard VAR(p) models, where n and p are fixed. In models
that n is large, Lemma 4 in Appendix B.1 shows that condition (3) is satisfied
if
∑p

k=1 |||Ak|||∞ < 1 and further regularity conditions on the size of the coef-
ficients. Finally, notice that under (A1) it is also true that maxk,i |φk,i|∞ ≤ c̄Φ,
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which means that the coefficients {Φk} are uniformly upper bounded under
the maximum entry-wise norm.

Assumption (A2) requires the error process to be a martingale difference
process satisfying very weak dependence condition on its conditional vari-
ance. This condition is of the weak type, L1 projective dependence measure in
Dedecker et al. (2007, section 2.2.4). Note that (1) strong mixing (or α-mixing)
sequences satisfy this condition (Davidson, 1994, Theorem 14.2); and (2) uni-
form mixing sequences (φ-mixing) and β-mixing sequences are also strong mix-
ing, but the converse is not true (Bradley, 2005, Equations (1.11) - (1.18)). If
we denote the centered outer product series vt = vech (utu

′
t −Σ), this assump-

tions requires that {vt} is L1 mixingale. It means that stochastic process with
Lr bounded, L1 near-epoch dependent, centered outer product series vt are
also contemplated in this setting Andrews (1988).

Finally, Assumptions (A1) and (A2) combined ensure that {yt} is second order
stationary for each n and p (Lütkepohl, 2006, Ch. 2). However, the process {yt}
is not mixing nor (necessarily) near-epoch dependent.

Condition (A3) imposes restrictions on the tail behavior of the innovation
process {ut} that are shared by {yt}. More precisely, we impose moment con-
ditions on all linear combinations b′ut and Lemma 3, in the appendix, shows
that each {yi,t} (i = 1, ..., n) also share the same tail properties. This condition
is essential for defining the rate in which n and p increase with T . We focus
on the case the tail decays at rate O(e−cx

α
) for some α > 0, that is, {b′ut} is

sub-Weibull with parameter α studied in Wong et al. (2020, Section 4.1). Note
that when α ≥ 1 and α ≥ 2 we have the sub-exponential and sub-Gaussian
tails respectively. However, when α ∈ (0, 1) the moment generating function
does not exist at any point and and these variables are usually called heavy
tailed.

Assumptions (A2) and (A3) describe the innovation process which has been
shown to be satisfied by a series of models. For instance, Proposition 3 in
Carrasco and Chen (2002) shows that under a set of regularity conditions our
assumptions (A2) and (A3) are satisfied by the polynomial random coefficient
autoregressive model; Boussama et al. (2011) derive conditions for stationarity
and geometric ergodicity and geometric strong mixing for the general multi-
variate GARCH(p,q) model under the BEKK parametrization; and Hafner and
Preminger (2009a,b) provide conditions under which (A2)–(A3) is satisfied for
a multivariate GARCH specification and factor-GARCH models.

It is convenient to write the model in stacked form. Let xt = (y′t−1, . . . ,y
′
t−p)

′

be the np × 1 vector of regressors and X = (x1, ...,xT )′ the T × np matrix of
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covariates. Let Yi = (yi,1, ..., yi,T )′ be the T × 1 vector of observations for the ith

element of yt, and Ui = (ui,1, ..., ui,T )′ the corresponding vector of innovations.
Denote βi the np × 1 vector of coefficients corresponding to equation i. Then,
model (1) is equivalent to

(5) Yi = Xβi + Ui, i = 1, . . . , n.

We now make additional assumptions concerning model (5).

Assumption (A4). The true parameter vectors βi, i = 1, . . . , n, satisfy
∑np

j=1 |βi,j|q ≤
Rq for some 0 ≤ q < 1 and 0 < Rq <∞.

Assumption (A5). The smallest eigenvalue of Γ := T−1E(X′X) is greater than a
positive universal constant σ2

Γ, uniformly on T .

Assumption (A4) imposes weak sparsity of the coefficients, in a sense that
most of them are small. This condition is slightly stronger than we need in a
sense that we may have distinct qi and Rq,i for each equation. In the case q = 0

we have sparsity in the standard sense, meaning that R0 = s, the number of
non-zero coefficients. In practice, we estimate a sparse model that truncates
all coefficients close to zero. This assumption is standard for weak sparsity,
see Negahban et al. (2012)[section 4.3] and Han and Tsay (2019)[Assumption
1] for an application in time series setting.

Assumption (A5) is often used in the sparse estimation literature (e.g. Kock
and Callot, 2015; Medeiros and Mendes, 2016b; Han and Tsay, 2019). Basu
and Michailidis (2015) (Proposition 2.3) derived bounds for Λmin(Γ) and Λmax(Γ)

using properties of the block Toeplitz matrix Γ and its generating function, the
cross-spectral density of the generating VAR(p) process:

(6)
Λmin(Σ)

max|z|=1 Λmax(A∗(z)A(z))
≤ Λmin(Γ) ≤ Λmax(Γ) ≤ Λmax(Σ)

max|z|=1 Λmin(A∗(z)A(z))
,

where A∗ is the conjugate transpose of A, the reverse characteristic polyno-
mial, defined in Assumption (A1). Basu and Michailidis (2015)[Proposition 2.2]
shows that under (A1),

max
|z|=1

Λmax(A∗(z)A(z)) <

[
1 +

∑p
k=1(|||Ak|||1 + |||Ak|||∞)

2

]2

.

Hence, (A5) is satisfied if, for instance, Λmin(Σ) > 0,
∑p

k=1 |||Ak|||1 < ∞ and∑p
k=1 |||Ak|||∞ <∞.

3. Illustration

In this section we illustrate processes satisfying Assumptions (A2) and (A3).
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Example 1 (Strong mixing sequences). Let {ut} denote a martingale difference,
strong mixing sequence with coefficients αm < b1 exp(−b2m

γ2) and common covari-
ance matrix Σ with eigenvalues bounded away from zero and infinity, uniformly
in n. It follows that rt = b′1utu

′
tb2 is also strong mixing of same size and, from

(Davidson, 1994, Theorem 14.2), E[rt−E(rt)|Ft−m] ≤ a1 exp(−a2m
γ2), for constants

a1 and a2.

Example 2 (L1 near-epoch dependent process). Let {ut} denote a weakly sta-
tionary, martingale difference sequence. Suppose b′vt = b′vech (utu

′
t − Σ) is a

centered, L1-NED sequence on Ft = σ〈εt, εt−1, ...〉, where {εt} is α-mixing with co-
efficients αm ≤ c1 exp(c2m

γ1), for all b ∈ {b ∈ Rn(n+1)/2 : |b|1 ≤ 1}. It means that
there are finite constants {dt} and {ψm} such that

E |b′(vt − E[vt|Ft−m:t])| ≤ dtψm,

where Ft−m:t = σ〈εt, ..., εt−m〉 and ψm ≤ exp(c3m
γ2). Under Assumption (A3), it

follows from Wong et al. (2020, Lemma 5) and Hölder inequality that for any
r <∞

‖b′vt‖r ≤ |b|r1 max
1≤i≤j≤n

‖uitujt‖r ≤ max
1≤i≤n

‖uit‖2r ≤ c4r
1/α.

Finally, it follows from Andrews (1988, Example 6) that Assumption (A2) holds
with a1 ≥ (2 maxt dt + c4r

1/α)(ec3/2
γ2 + 6c1e

c2(r−1)/r2γ2 ) and a2 ≤ (c3 ∧ c2(r − 1)/r)/2γ2.

Example 3 (Linear process in the variance). Let {vt} denote a sequence of cen-
tered independently and identically distributed, sub-Weibull random variables
taking values in Rn with identity covariance matrix. Let ut = H

1/2
t vt where H1/2

t

is the Cholesky decomposition of H t and

ht = vech (H t) = c+
∞∑
j=1

Ψjηt−j.

Here, vech (M ) stacks the lower diagonal elements of matrixM and ηt = vech (vtv
′
t)

and {Ψj} satisfy
∑∞

j=m |b̃′Ψj|1 . e−a2mγ2 for all b̃ ∈ {b ∈ Rn(n+1)/2 : |b|1 ≤ 1}.
We first show {ut} is weakly stationary martingale difference with respect to
Ft−1 = σ〈vt−1,vt−2, ...〉. First E[ut|Ft−1] = H

1/2
t E[vt|Ft−1] = 0. The covariance is

given by

E[utu
′
t] = E[H

1/2
t E(vtv

′
t|Ft−1)(H

1/2
t )′] = E[H t].

Now, E[ht] = C +
∑∞

j=1 ΨjEηt−j = C +
∑∞

j=1 Ψjvech (In) = Σ, where E(ηt) =

vech (E(vtv
′
t)) = vech (In) for all t.
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For constant vectors b1,b2 ∈ {b ∈ Rn : |b| ≤ 1},

E[b′1(utu
′
t −Σ)b2|Ft−1] = b′1(H t − EH t)b2

= b̃′(ht − Eht)

=
∞∑
j=1

b̃′Ψj(ηt−j − Eηt−j),

where b̃ ∈ {b ∈ Rn(n+1)/2 : |b|1 ≤ 1}. It follows that

E |E[b′1(utu
′
t −Σ)b2|Ft−m]| = E

∣∣∣∣∣
∞∑
j=1

b̃′ΨjE(ηt−j − Eηt−j|Ft−m)

∣∣∣∣∣
=

∥∥∥∥∥
∞∑
j=m

b̃′Ψj(ηt−j − Eηt−j)

∥∥∥∥∥
1

≤ 2

(
∞∑
j=m

|b̃′Ψj|1

)
max
|b|1≤1

‖b′vt‖2
2,

where in the last line we use the same arguments of Lemma 3 in the appen-
dix, followed by the triangle inequality and ‖δ′ηt‖ ≤ max|b1|≤1,|b2|1≤1 ‖b′1vtv′tb2‖ ≤
max|b|≤1 ‖b′vt‖2

2. Then, Assumption (A2) is satisfied under the condition that∑∞
j=m |b̃′Ψj|1 . e−a2mγ2 and ‖b′vt‖2 <∞.
As to assumption (A3), it follows from (Wong et al., 2020, Lemma 5) that we

have to show that supd≥1
d−1/α‖b′ut‖d < cα <∞. For any d ≥ 1,

‖b′ut‖d = ‖b′utu′tb‖
1/2
d/2

= ‖b′H1/2
t vtv

′
t(H

1/2
t )b‖1/2

d/2

=

∥∥∥∥∥b′H tb×
b′H

1/2
t vtv

′
t(H

1/2
t )b

b′H tb

∥∥∥∥∥
1/2

d/2

≤

E

|b′H tb|d/2 E

∣∣∣∣∣b′H1/2
t vtv

′
t(H

1/2
t )b

b′H tb

∣∣∣∣∣
d/2 ∣∣∣Ft−1


1/d

≤
{
E
(
|b′H tb|d/2 sup

δ′δ=1
E[(δ′vtv

′
tδ)

d/2|Ft−1]

)}1/d

= ‖b′H tb‖1/2
d/2 sup

δ′δ=1
‖δ′vt‖d,

where the last line follow by independence. Condition (A3) holds if ‖b′H tb‖d/2 is
bounded independently of d. It follows that there is b̃ ∈ {b ∈ Rn(n−1)/2 : |b|1 ≤ 1}



HIGH-DIMENSIONAL VAR WITH WEAKLY DEPENDENT INNOVATIONS 9

such that

‖b′H tb‖d/2 = ‖b̃′ht‖d/2

=

∥∥∥∥∥b̃′C +
∞∑
j=1

b̃′Ψjηt−j

∥∥∥∥∥
d/2

≤
∥∥∥b̃′C∥∥∥

d/2
+

∥∥∥∥∥
∞∑
j=1

b̃′Ψjηt−j

∥∥∥∥∥
d/2

≤
∥∥∥b̃′C∥∥∥

d/2
+ 2

(
∞∑
j=1

|b̃′Ψj|1

)
max
|b|1≤1

‖b′vt‖2
d/2.

4. LASSO estimation bounds

Let LT (βi) = 1
T
|Yi − Xβi|22 denote the empirical squared risk, for each i =

1, ..., n. We estimate βi, i = 1, . . . , n, equation-wise using the LASSO procedure

(7) β̂i ∈ arg min
βi∈Rnp

{LT (βi) + λi|βi|1} , i = 1, ..., n,

where λi are positive regularization parameters. For ease of exposition we as-
sume λ1 = · · · = λn = λ. It is well known that β∗i = arg minβi E {LT (βi)} are the
population parameters in (5), under stated conditions.

We follow the steps in Negahban et al. (2012) to derive error bounds for the
equation-wise LASSO estimator. First define the pair of subspaces M(S) =

{u ∈ Rnp|ui = 0, i ∈ Sc} and its orthogonal complement M⊥(S) = {u ∈ Rnp|ui =

0, i ∈ S}, where S ⊆ {1, . . . , np}. Set uM and uM⊥ the projection of u on M(S)

and M⊥(S), respectively. Clearly, for any u ∈ Rnp, |u|1 = |uM|1 + |uM⊥|1. We
say | · |1 is decomposable with respect to the pair (M(S),M⊥(S)) for any set
S ⊂ {1, . . . , np}.

We have to show two conditions to obtain a finite sample estimation error
bound for the parameter vectors. The first condition is known as restricted
strong convexity (RSC) and restricts the geometry of the loss function around
the optimum β∗ and is related to the Restricted Eigenvalue (Van De Geer et al.,
2009). The second condition is known as deviation bound and restricts the
size of the sup-norm of the gradient ∇LT (β∗).

Definition (Deviation Bound (DB)). The deviation bound condition holds if the
event {λ ≥ 2|X′U i/T |∞} occurs with high probability for all i = 1, ..., n.

Note that one may adopt individual λis for each equation, in which above
definition should be modified adequately.
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Definition (Restricted Strong Convexity (RSC)). Define C(β∗,M,M⊥) = {∆ ∈
Rnp||∆M⊥|1 ≤ 3|∆M|1 + 4|β∗M⊥|1}. The restricted strong convexity holds for pa-
rameters κL and τL if for any ∆ ∈ C,

∆′X′X∆

T
≥ κL|∆|22 − τ 2

L(β∗).

Negahban et al. (2012)[Section 4] show these conditions are satisfied by
many loss functions and penalties. Basu and Michailidis (2015) show that
both DB and RSC are satisfied by Gaussian VAR(p) models in high dimensions.

If both DB and RSC hold with large probability, Negahban et al. (2012)[The-
orem 1] provides an l2 estimation bound for β̂i. Our goal is to show that the
error bounds are valid for each ∆i = β̂i − β∗i , i = 1, . . . , n at the same time.

Lemma 1 characterizes the solutions of the optimization program in (7). We
require further notation. Define Ci := C(β∗i ,Mi,η,M⊥

i,η) for a pair of subsets
Mi,η = M(Si,η) and M⊥

i,η = M⊥(Si,η), where Si,η = {j ∈ {1, ..., pn}||βi,j| > η} and
Sci,η = {j ∈ {1, ..., pn}||βi,j| ≤ η}. These sets represent the active parameters
under weak sparsity. In Theorem 1 we set η = λ/σ2

Γ to derive our results.

Lemma 1. Suppose {yt} is generated from (1) and Assumptions (A1), (A2) and
(A3) are satisfied. Let

λ > τ ∗(ε+ log(Tn2p))2/α

√
ε+ log(n2p)

T
,

where τ ∗ > 0 is depends on τ , α and c̄Φ, and any ε > 0. Then, if T > ε+ log(n2p),
the event

{
∀i = 1, ..., n : β̂i − β∗ ∈ Ci

}
holds with probability at least 1−π1(ε) with

π1(ε) = 10e−ε.

Lemma 1 shows that under restrictions on λ the solutions to the optimization
program in (7) lie inside the star-shaped sets Ci with high probability, as the
sample size increases. It restricts the directions in which we should control
the variation of our estimators. Next result shows the deviation bound holds
with high probability for appropriate choice of λ. To formalize the idea, let

(8) Di(λ) =

{
λ ≥ 2

∣∣∣∣ 1

T
X ′Ui

∣∣∣∣
∞

}
, i = 1, ..., n,

denote the event “DB holds for equation i with regularization parameter λ.”

Proposition 1 (Deviation Bound). Suppose {yt} is generated from (1), and As-
sumptions (A1), (A2) and (A3) are satisfied and T > ε + log(n2p) for some ε > 0.
Set

λ > τ ∗(ε+ log(Tn2p))2/α

√
ε+ log(n2p)

T
,
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for some τ ∗ > 0 and any ε > 0. Then, Pr(∪ni=1Dci ) ≤ 10e−ε.

Suppose ε = log(np), n2p > T . The regularization parameter λ satisfies

λ & [log(np)]2/α
√

log(np)

T
,

and π1(λ) ∝ 1/n2p. This regularization parameter is O([log(np)]2/α) larger, in
rate, than one obtained in Wong et al. (2020, Proposition 7). Their results re-
lied heavily in yt being a β-mixing sequence in a sense that the concentration
inequality derived in Merlevède et al. (2011) depends on it. In our case, the
dependence is characterized by the conditional variance of the innovation pro-
cess and coefficients Φ1,Φ2, ..., and we are not aware of ”tight” concentration
inequalities that hold under these assumptions. Nevertheless, for fixed n, it is
possible to show that the concentration inequality for sub-Weibull martingales
in Lemma 5 is tight (Fan et al., 2012b).

Let ΓT = X′X/T denote the scaled Gram matrix and Γ its expected value.
We show that if each element in ΓT is sufficiently close to its expectation, and
Assumptions (A4) and (A5) hold, then RSC is satisfied with high probability.

Lemma 2 (Restricted Strong Convexity). Suppose Assumptions (A4) – (A5) hold
and that |||ΓT − Γ|||max ≤

σ2
Γη
q

64Rq
. Then, for any ∆i ∈ Ci,

(9) ∆′iΦT∆i ≥
σ2

Γ

2
|∆i|22 −

σ2
Γ

2
Rqη

2−q.

To show RSC holds with high probability for all i = 1, .., n at the same time,
we have to bound the event

(10) B(a) = {|||ΓT − Γ|||max ≤ a} .

where a =
σ

2(1−q)
Γ λq

64Rq
. If we assume distinct Rq,i and qi for each equation, we should

work with ∩iBi and Bi defined accordingly.

Proposition 2. Suppose Assumptions (A1), (A2) and (A3) hold. If

p <
T γ1∧γ2

( 2
γ1∧γ2+1

)(2 + 1.4
2γ1cφ∧a2

)
,

and

a ≥
√

2(1 + ξ)1+2/ατ 2[log(npT )]1+2/α

T
,
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for some ξ > 0, then Pr(Bc(a)) ≤ π2(a), where

π2(a) :=
2

(np)ξT 1+ξ
+

8

(np)ξT ξ

+
n2

a

(
b1e
−cφ∧a2(T/2)γ2∧γ1 + b8e

−2γ1cφ(T/2)γ1
)
.

This bound controls the proximity between the empirical and population co-
variance matrices. Similar concentration inequalities were derived by (Kock
and Callot, 2015, Lemma 9), (Loh and Wainwright, 2012, Lemma 14) and
Medeiros and Mendes (2016a). Their results, however, cannot be applied in
our setting. Explicit expressions for the constants b1, b8 and τ in Proposition 2
are found in Lemma 6. Also, one may replace ε by its lower bound to remove
dependence.

This concentration guided the choice of dependence condition used in this
work. Traditionally one uses either a Hanson-Wright inequality or a Bern-
stein or Hoeffding type inequality to bound the empirical covariance around
its mean. We write the centered Gram matrix ΓT − Γ as a sum of martingales
and a dependence term. The martingales are handled using a Bernstein type
bound and the dependence term is handled using both assumptions (A1) and
(A2). Combined, they imply a sub-Weibull type decay on expected value of
dependence term.

Finally, we use the bounds π1 and π2 in Proposition 1 and Proposition 2 to
show that equation wise (nodewise) lasso regressions are close to their popu-
lation counterpart in l2.

Theorem 1. Suppose assumptions (A1) – (A5) hold. Set η = λ/σ2
Γ. Under condi-

tions of Propositions 1 and 2, there exists T0 > 0 such that for all T ≥ T0,

|β̂i − βi∗|22 ≤ (44 + 2λ)Rq

(
λ

σ2
Γ

)2−q

, i = 1, ..., n,

in a set with probability at least 1− π1(log(np))− π2

(
σ

2(1−q)
Γ λq

64Rq

)
.

Theorem 1 states that, with high probability, estimated and population pa-
rameter vectors are close to each other in the Euclidean norm. It requires that
Propositions 1 and 2 hold jointly, meaning that λ, Rq and σ2

Γ must satisfy rate
conditions. We show that if the size of ’small’ coefficients and smallest eigen-
value σ2

Γ of Γ are restricted, then the rate of λ in Proposition 1 is unaffected.
For ε = log(np) and T < np2 Proposition 1 requires, after simplification,

λ ≥ τ ∗ log(np)2/α

√
4 log(np)

T
,
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for some constant τ ∗. Replacing a by σ
2(1−q)
Γ λq

64Rq
in Proposition 2 we obtain

λq &

(
log(np)2/α

√
log(np)

T

)
×

(
Rq

σ
2(1−q)
Γ log(np)1/α

)
.

However, it is not necessarily a constraint in the rate of λ. Propositions 1 and
2 will hold jointly for T sufficiently large for 0 ≤ q < 1 if

Rq

σ
2(1−q)
Γ

= o

(
log(np)(2q−1)/α

(
T

log(np)

)(1−q)/2
)
.

In other words, if the small parameters are not too large and smallest eigen-
value of Σ is not too small as a function of T .

5. Discussion

This work provides finite sample l2 error bounds for the equation-wise LASSO
parameters estimates of a weakly sparse, high-dimensional, VAR(p) model,
with dependent and heavy tailed innovation process. It covers a large col-
lection of specifications as illustrated in section 3.

A distinctive feature this work is that the dependence structure of the inno-
vations are characterized by a very weak projective dependence condition that
is naturally verifiable in settings where one is interested in the conditional
variance of the process. The series of innovations is not necessarily mixing or
near-epoch dependent, nor the resulting time series {yt}.

Our bounds hold under a heavy tailed setting in a sense that we do not
require the moment generating function to exist. Despite the tails in {yt} being
sub-Weibull as in Wong et al. (2020), we are not able to recover the same rates
and lower bound for the regularization parameter λ. The reason is that Wong
et al. (2020) bounds rely heavily on the concentration inequality for mixing
sequences in Merlevède et al. (2011). Given the weak projective dependence
adopted, we chose to use a martingale concentration and overcome all together
the issue of using the dependence metric for deriving the concentration bound.
Nevertheless, we believe the loss in efficiency is minimal. Close inspection of
proof of Lemma 5 shows that the loss of efficiency is concentrated in bounding
the tail. It amounts to an extra log(T ) term, which does not change the rates
under assumption that T < n2p, eventually.

A limitation of this work is the restriction that the model is, almost, correctly
specified in the mean, in a sense that innovations are martingale differences.
Nevertheless, this assumption is standard in the literature and we are able to
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derive results covering a broad range of data generating processes and con-
ditional dependence measures. The martingale difference condition cannot
be relaxed at this moment as our deviation bound depends on it. Further-
more, we do not require strong sparsity in a sense that near zero coefficients
are effectively treated as zero as long as they are concentrated in some slowly
increasing lq ball (0 ≤ q < 1) around the origin.

Results in this paper can be easily extended to polynomial tails. The strategy
is to replace the martingale concentration in Lemma 4, used to prove Proposi-
tions 1 and 2 by

Pr

(
max
1≤i≤n

|
T∑
t=1

ξit| > Ta

)
≤ nK

(a
√
T )d

,

whenever ‖ξit‖d <∞. If available under our dependence conditions, one could
employ a Fuk-Nagaev type inequality. Nevertheless, if follows that under appro-
priate changes to concentration rates, equation-wise LASSO estimators also
admit oracle bounds. A direct consequence is that moments conditions on
Carrasco and Chen (2002) and Hafner and Preminger (2009a,b) are directly
applicable.

Despite working with a relatively simple structure and estimation model,
the machinery can be applied to more complex settings. The key points are
showing that the empirical covariance concentrates around its mean in terms
of its maximum entry-wise norm and the concentration inequality for large
dimensional, sub-Weibull martingales. Following development of Negahban
et al. (2012), the results may be naturally extended to structured regularization
with node-wise regression and replacing using the Frobenius norm for system
estimation. Finally, the HD VAR specification encompasses large dimensional
vector-panels among other models.
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Appendix A. Proof of main results

A.1. Proof of Lemma 1. We apply Negahban et al. (2012, Lemma 1). The
empirical loss LT (βi) is convex for each i. Proposition 1 ensures each (8) hold
with desired probabilities. �

A.2. Proof of Proposition 1. Write the event Ai = {maxj |u′ixj| < Tλ0/2}. We
shall derive probability bounds for Pr(∩ni=1Ai) ≥ 1−Pr(maxi,j |u′ixj| ≥ Tλ0/2). We
bound the probability using Corollary 1.

Under Assumption (A2), u′ixj =
∑T

t=p utiyt−s,j (s = 1, ..., p and i, j = 1, ..., n) is
a martingale and each utiyt−s,j is a martingale difference process. Hence, we
follow by applying Corollary 1. Conditions on T and λ0/2 are already satisfied.
We need to show that utiyt−s,j is sub-Weibull. For each d ≥ 1, ‖utiyt−s,j‖d ≤
‖uti‖1/2

2p ‖yt−s,j‖
1/2
2p ≤ c̄Φ max|b|1≤1 ‖b′u‖2p, by Lemma 3. Then, it follows from Wong

et al. (2020, Lemma 5 and Lemma 6) and Assumption (A3) that utiyt−s,j is sub-
Weibull with parameter α/2. Hence, there is some constant τ ∗ depending on τ ,
c̄Φ and α such that Pr(|utiyt−s,j| > x) ≤ 2 exp(−|x/τ ∗|α/2). Result follows.

A.3. Proof of Lemma 2. For notational simplicity, write ‖ΦT − Γ‖max ≤ δ ≤
σ2

Γ/64ψ2(Mi,η) where ψ(Mi,η) = supu∈Ci |u|1/|u|2 =
√
|Si,η|. Using the arguments

in (Negahban et al., 2012, section 4.3), |βi,M⊥i,η |1 ≤
∑

j∈Sci,η
|βi,j|q|βi,j|1−q ≤ η1−qRq,

and Rq ≥
∑

j∈Siη |βi,j|
q ≥ |Si,η|ηq. Hence σ2

Γη
q

64Rq
≤ σ2

Γ

64ψ2(Mi,η)
. It follows that

∆′iΨT∆i = ∆′iΓ∆i + ∆′i[ΦT − Γ]∆i

≥ |∆i|22 inf
u∈Ci\{0}

u′Γu

u′u
− |∆i|1|[ΨT − Γ]∆i|∞

≥ σ2
Γ|∆i|22 − |∆i|21|||ΦT − Γ|||max

≥ σ2
Γ|∆i|22 − δ|∆i|21

≥ σ2
Γ|∆i|22 − δ

(
4|∆i,Mi,η

|1 + 4|βi,M⊥i,η |1
)2

≥ |∆i|22
(
σ2

Γ − 32δψ(Mi,η)
2
)

+ 32δ|βi,M⊥i,η |
2
1

≥ |∆i|22
σ2

Γ

2
− σ2

Γ

2ψ2(Mi,η)
|βi,M⊥i,η |

2
1

≥ |∆i|22
σ2

Γ

2
− σ2

Γ

2Rqη−q
η2(1−q)R2

q

= |∆i|22
σ2

Γ

2
− σ2

Γ

2
η2−qRq,

proving the result. �

A.4. Proof of Proposition 2. The proof consists on a trivial application of
Lemmas 6 setting ε = σ

2(1−q)
Γ λq/64Rq. �
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A.5. Proof of Theorem 1. We apply (Negahban et al., 2012, Theorem 1). Lemma
1 ensures λ is selected accordingly, LT (βi) is a convex function of βi, Lemma
2 ensures RSC is satisfied with κL = σ2

Γ/2 and τ 2
L(βi) =

σ2
Γη

2−qRq
2

. Define ψ(Mi,η)

as in the proof of Lemma 2 and recall |Si,η ≤ Rqη
−q and |βi,M⊥i,η |1 ≤ Rqη

1−q, and
that η = λ/σ2

Γ. For each i,

|β̂i − β∗|22 ≤ 9
λ

κ2
L
ψ2(Mi,η) +

λ

κL

[
2τ 2
L(β∗i ) + 4|βi,M⊥i,η |1

]
≤ 36

λ

σ4
Γ

Rqη
−q + 2

λ

σ2
Γ

[
Rqη

2−qσ2
Γ + 4Rqη

1−q]
≤ 36

λ

σ4
Γ

Rq

(
λ

σ2
Γ

)−q
+ 2

λ

σ2
Γ

[
Rq

(
λ

σ2
Γ

)2−q

σ2
Γ + 4Rq

(
λ

σ2
Γ

)1−q
]

≤ 36Rq

(
λ

σ2
Γ

)2−q

+ 2λRq

(
λ

σ2
Γ

)2−q

+ 8Rq

(
λ

σ2
Γ

)2−q

= (44 + 2λ)Rq

(
λ

σ2
Γ

)2−q

.

�

Appendix B. Auxiliary Lemmata

B.1. Properties of yt. In this section we will derive properties of the process
{yt} described in (1)

Lemma 3. Suppose that for some norm ‖ · ‖ψ we have

max
t

max
|b|1≤1

‖b′ut‖ψ ≤ cψ,

for some constant cψ < ∞ that only depends on the norm ‖ · ‖ψ. Then, under
conditions (A1) - (A2), for all t and i ∈ {1, . . . , n},

‖yi,t‖ψ ≤ cΦ ×
∞∑
j=0

|e′iΦj|1.

Proof. Under assumption (A1) the VAR model in (1) admits the VMA(∞) repre-
sentation (4) for all n and p. Let {ei = (0, ..., 0, 1, 0, ..., 0)′, i = 1, ..., n} the canonical
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basis vectors. Then, for all i, yi,t = e′iyt and

‖e′iyt‖ψ =

∥∥∥∥∥
∞∑
j=0

e′iΦjut−j

∥∥∥∥∥
ψ

=

∥∥∥∥∥
∞∑
j=0

n∑
k=1

e′iΦjekuk,t−j

∥∥∥∥∥
ψ

=

∥∥∥∥∥
∞∑
j=0

|e′iΦj|1
n∑
k=1

e′iΦjek
|e′iΦj|∗

uk,t−j

∥∥∥∥∥
ψ

≤

(
∞∑
j=0

|e′iΦj|1

)
max
t

max
|b|1≤1

‖b′ut‖ψ

≤
∞∑
j=0

|e′iΦj|1 × cψ,

where | · |∗ := | · |1I(| · | > 0) + I(| · |1 = 0). �

Due stability condition (A1), for each n and p, there exists c̄Φ such that∑∞
i=0 |φi,δ|1 ≤ c̄Φ for all δ = 1, ..., n. Let ‖ · ‖ψ be the Orlicz norm,

‖ · ‖ψ = inf{c > 0 : ψ(| · |/c) ≤ 1},

where ψ(·) : R+ 7→ R+ is convex, increasing function with ψ(0) = 0 and ψ(x)→∞
as x→∞. Traditional choices of ψ(·) are (a) ψ(x) = xp, p ≥ 1, (b) ψ(x) = exp(xa)−
1, a > 1, and (c) ψ(x) = (ae)1/axI(x ≤ a−1/a) + exp(xa)I(x > a−1/a). These choices
contemplate sub-Gaussian and sub-exponential tails, as well as process with
heavy-tails, such as sub-Weibull and polynomial tails. Note that by combining
this result with (Wong et al., 2020, Lemma 5 and Lemma 6) if {b′ut} are sub-
Weibull, so are {b′yt}.

Assumption (A1) is satisfied under restrictions on the parameter space. The
stability assumption is standard in the literature whereas the tail sum (3) re-
quires further constraints on the parameter matrices. Lemma 4 presents a
sufficient set of restrictions on the sparse parameter matricesA1, ...,Ap so that
(3) is satisfied.

Lemma 4. Suppose that for all n and p, there exists some ρ > 0 such that
p∑

k=1

|||Ak|||∞ =

p∑
k=1

max
j=1,...,n

|ak,j|1 ≤ e−ρ,

where Ak = [ak,1 : · · · : ak,n]′. Then for every δ = 1, ..., n,

i. |φk,δ|1 ≤
∑p∧k

j=1 |||Aj|||∞|φk−j,δ|1, k = 1, 2, ...
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ii.
∑∞

k=m |φk,δ|1 ≤ c0 e
−mρ, m ≥ 1, provided that for all p,

(B.1) max
δ=1,...,n

max
k=1,...,p

ekρ ×
k∑
j=1

α̃j|φj,δ|1 ≤ (1− e−ρ)c0,

where αi = eρ|Ai|∞ and α̃i =
∑
i:|i|=k−p+j

∏k−p
l=1 αil where i = (i1, ..., ik−p) is a

multi-index.

Proof. Starting from the recursive definition of Φk =
∑p∧k

j=1 Φk−jAj,

|φk,δ|1 = |e′δΦk|1 =

∣∣∣∣∣
p∧k∑
j=1

e′δΦk−jAj

∣∣∣∣∣
1

≤
p∧k∑
j=1

|φk−j,δAj|1 ≤
p∧k∑
j=1

|φk−j,δ|1|||Aj|||∞.

Suppose k ≥ p, let αj = eρ|||Aj|||∞ and verify that 0 ≤
∑p

j=1 αj ≤ 1. Iterating on
the previous argument s ≤ k − p times yields

|φk,δ|1 ≤
p∑

j1=1

· · ·
p∑

js=1

(
s∏
l=1

|Ajl |∞

)
|φk−∑s

l=1 jl,δ
|1

= e−sρ
p∑

j1=1

· · ·
p∑

js=1

(
s∏
l=1

αjl

)
|φk−∑s

l=1 jl,δ
|1

= · · ·

= e−ρ(k−p)
p∑
j=1

 ∑
i:|i|1=k−p+j

k−p∏
l=1

αil

 |φp−j,δ|1,
where i = (i1, ..., ik−p) is a multi-index and the summation is over all combina-
tions satisfying |i|1 = k − p + j. The term inside parentheses is α̃j and under
the conditions of the lemma

|φk,δ|1 ≤ e−ρ k ×

[
eρ p

p∑
j=1

α̃j|φp−j, δ|1

]
≤ (1− e−ρ)c0 e

−ρ k.

The same result follows trivially for k < p under the assumptions of the
lemma.

Summing over all values of k ≥ m,
∞∑
k=m

|φk,δ|1 ≤ c0(1− e−ρ)
∞∑
k=m

e−ρ k = c0e
−mρ

∑∞
k=0 e

−ρ k

(1− e−ρ)−1
= c0e

−mρ.

�

B.2. Concentration inequality for martingales. In this section we derive
concentration bounds for martingales. In the firs theorem we consider martin-
gales with at most d finite moments, whereas in the second we allow the tails
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of the marginal distributions to decrease at a sub-Weibull, sub-exponential or,
even sub- and super-Gaussian rate.

Lemma 5 (Concentration bounds for high dimensional martingales). Let {ξt}t=1,...,T

denote a multivariate martingale difference process with respect to the filtration
Ft taking values on Rn and assume E(ξ2

it) is finite for all 1 ≤ i ≤ t and 1 ≤ t ≤ T .
Then,

Pr

(∣∣∣∣∣
T∑
t=1

ξt

∣∣∣∣∣
∞

> Tx

)
≤ 2n exp

(
− Tx2

2M2 + xM

)
+ 4 Pr

(
max

1≤t≤T
|ξt|∞ > M

)
,

for all M > 0.

Proof. Write ξt = (ξ1t, ..., ξnt)
′. The proof follows after application of (Fan et al.,

2012a, Corollary 2.3).
Write V 2

k (M) = max1≤i≤n
∑k

t=1 E[ξ2
itI(ξit < M)|Ft], Xik =

∑k
t=1 ξit and X ′ik(M) =∑k

t=1 ξitI(ξit ≤M). It follows that for v > 0 and x > 0,

Pr(|Xn|∞ > x) ≤ Pr(∃i, k : Xik > x ∩ V 2
k (M) ≤ v2) + Pr(V 2

T (M) > v2)

≤ Pr(∃i, k : X ′ik(M) > x ∩ V 2
k (M) ≤ v2) + Pr(V 2

T (M) > v2)

+ Pr

(
max
1≤i≤n

k∑
t=1

ξitI(ξit > M) > 0

)
(1)

≤ n exp

(
− (Tx/M)2

2((v/M)2 + T
3
x/M)

)
+ Pr(V 2

n (M) > v2)

+ Pr

(
max

1≤t≤T
|ξt|∞ > M

)
(2)

≤ n exp

(
− Tx2

2M2 +Mx

)
+ 2 Pr

(
max

1≤t≤T
|ξt|∞ > M

)
.
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In (1) we use union bound and (Fan et al., 2012a, Theorem 2.1) and in (2) we
set v2 = T (M2 + 1

6T
Mx) and the following:

Pr(V 2
T (M) > v2) ≤ Pr

(
max
1≤i≤n

T∑
t=1

E[ξ2
itI(|ξit| ≤M)|Ft] ≥ v2

)

+ Pr

(
max
1≤i≤n

T∑
t=1

E[ξ2
itI(ξit < −M)|Ft] > 0

)

≤ Pr

(
max
1≤i≤n

T∑
t=1

E[ξ2
itI(|ξit| ≤M)|Ft] ≥ T (M2 +

1

6T
Mx)

)

+ Pr

(
max

1≤t≤T
|ξt|∞ > M

)
≤ Pr

(
max

1≤t≤T
|ξt|∞ > M

)
,

where in the last line we note that
∑T

t=1 E[ξ2
t I(|ξt| ≤M)|Ft] ≤ TM2.

Finally, write Pr(|Xn| ≥ Tx) = Pr(Xn ≥ Tx) + Pr(−Xn ≥ Tx) and apply above
development in both terms. �

Corollary 1. Let {ξt = (ξ1t, ..., ξnt)
′}t≥1 denote a multivariate martingale difference

process with respect to the filtration Ft taking values on Rn. Suppose that for
each maxi,t Pr(|ξit| > x) ≤ 2e−(x/τ)α, for all x > 0, some α > 0 and τ > 0 Then,

Pr

(∣∣∣∣∣
T∑
t=1

ξt

∣∣∣∣∣ > Tx

)
≤ 2n exp

(
− Tx2

2M2 + xM

)
+ 8nT exp

(
−M

α

τα

)
.

In particular, if x > τ(ε + log(nT ))1/α
√
ε+ log n/

√
T and T > (ε + log n) for any

ε > 0,

Pr

(∣∣∣∣∣
T∑
t=1

ξt

∣∣∣∣∣ > Tx

)
≤ 10e−ε.

Proof. The first part we combine the union bound with assumption on ξit. In
the second part, we will need the following bound. Let 0 < a < b/4 < ∞. then√
a+ b−

√
a ≥
√
b(1− 2

√
a/b)1/2. To verify that, first note that

√
a+ b ≤

√
a+
√
b,

then (
√
a+ b −

√
a)2 = 2a + b − 2

√
a2 + ab ≥ b − 2

√
ab = b(1 − 2

√
a/b). Now, let

a = 1/T and b = 8/(ε + log n) and verify that the choice M = x
√
T/
√
ε+ log n

satisfy log n− Tx2

2M2+Mx
< −ε, then replace M and x to obtain the bound. �

B.3. Concentration bound for empirical covariance matrix. In this section
we derive concentration bound for ‖ΦT−Γ‖max, where ΦT = X′X/T and Γ = EΦT .
We first split the problem into a sum of martingales and a tail dependence term.
Then, we bound both individually.
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Lemma 6. Suppose Assumptions (A1), (A2) and (A3) hold and

p <
T γ1∧γ2

( 2
γ1∧γ2+1

)(2 + 1.4
2γ1cφ∧a2

)
.

If for some ξ > 0

ε2 ≥ 2(1 + ξ)1+2/ατ 2[log(npT )]1+2/α

T
,

then

Pr (‖ΓT − Γ‖max ≥ ε) ≤ 2

(np)ξT 1+ξ
+

8

(np)ξT ξ

+
n2

ε

(
b1e
−cφ∧a2(T/2)γ2∧γ1 + b8e

−2γ1cφ(T/2)γ1
)(B.2)

where b1, b5 and τ are constants not depending on T .

Proof. Use the union bound to rewrite our probability bound in terms of yt−s:

Pr(‖ΦT − Γ‖max > ε) ≤ 2

p∑
r=0

p−r∑
s=0

Pr

∥∥∥∥∥
T∑

t=p+1

yt−ry
′
t−r−s − E[yt−ry

′
t−r−s]

∥∥∥∥∥
max

> Tε

 .

Now, use a telescopic expansion of yty
′
t−s to obtain a sum of martingales and

a dependence term:
T∑

t=p+1

yty
′
t−s − E[yty

′
t−s] =

T∑
t=p+1

m∑
l=1

E[yty
′
t−s|Ft−l+1]− E[yty

′
t−s|Ft−l]︸ ︷︷ ︸

I1

+
T∑

t=p+1

E[yty
′
t−s|Ft−m]− E[yty

′
t−s]︸ ︷︷ ︸

I2

= I1 + I2.

Here,

I1 =
m∑
l=1

T∑
t=p+1

V
(s)
l,t and I2 =

T∑
t=p+1

E[yty
′
t−s|Ft−m]− E[yty

′
t−s]
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where {V (s)
l,t }t, l = 1, ...,m, are sequences of martingale differences. The same

decomposition holds for all terms yt−syt−r−s. Then,

Pr(‖I1 + I2‖max > Tε) ≤
m∑
l=1

Pr

(
‖

T∑
t=p+1

V
(s)
l,t ‖max >

Tε

2m

)

+ Pr

∥∥∥∥∥
T∑

t=p+1

E[yty
′
t−s|Ft−m]− E[yty

′
t−s]

∥∥∥∥∥
max

>
Tε

2


≤ 2mn2 exp

(
− Tε2

2M2 +Mε

)
+ 4mn2T max

l,t
Pr
(
|V (s)
l,t | > M

)
(B.3)

+
2

Tε
E
∣∣∣∣ max

1≤i,j<n
E|

T∑
t=p+1

E[e′iytyt−sej|Ft−m]− e′iE[y′tyt−s]ej

∣∣∣∣,(B.4)

where ei = (0, ..., 0, 1, 0, ..., 0)′ is the ith canonical basis vector in Rn.
Bounding the tail (B.3):

The martingale differences {V (s)
t,l } (l = 1, .., n and s = 0, ..., p) are sub-Weibull

with parameter α/2. For any random variables (X, Y ) and σ-algebras F and G,

‖E[XY |F ]− E[XY |G]‖p ≤ 2‖XY ‖p ≤ 2‖Y 2‖1/2
p ‖X2‖1/2

p .

Therefore, it follows from Wong et al. (2020, Lemmas 5 and 6) that if bothX and
Y are sub-Weibull with parameter α, then XY is sub-Weibull with parameter
α/2. Therefore, there exists some τ ∗ such that Pr(|V (s)

t,l | > s) ≤ 2 exp(−|x/τ ∗|α/2),
bounding (B.3).
Bounding covariances (B.4):

Now we move toward bounding the dependence term (B.4).Write

yty
′
t−s =

s−1∑
j=0

Φjut−j

∞∑
j=0

u′t−s−jΦ
′
j +

∞∑
j=0

Φs+jut−s−j

∞∑
j=0

u′t−s−jΦ
′
j

=
s−1∑
j=0

Φjut−j

∞∑
j=0

u′t−s−jΦ
′
j

+
∞∑
j=0

Φj+sut−s−jut−s−jΦj

+
∞∑
k=1

∞∑
j=0

Φj+sut−s−jut−s−j−kΦj+k

+
∞∑
k=1

∞∑
j=0

Φj+s+kut−s−j−kut−s−jΦj.
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It follows that E[yty
′
t−s] =

∑∞
j=0 Φj+sΣΦj. Recall that Ft−m = σ〈ut−i : i = m,m +

1, ...〉, then, for m > s,

E[ytyt−s|Ft−m]− E[yty
′
t−s] =

m−s−1∑
j=0

ΦjE[ut−s−ju
′
t−s−j −Σ|Ft−m]Φ′j+s

+
∞∑
j=0

Φm+j(ut−m−jut−m−j −Σ)Φm−s+j

+
∞∑
k=1

∞∑
j=0

Φm+jut−m−ju
′
t−m−j−kΦm−s+j+k

+
∞∑
k=1

∞∑
j=0

Φm+j+kut−m−j−ku
′
t−m−jΦm−s+j

= A1(t, s,m) + A2(t, s,m) + A3(t, s,m) + A4(t, s,m).

(B.5)

We shall bound E
∣∣∑p

r=0

∑p−r
s=0 e

′
kAi(t− r, s,m)el

∣∣ individually, for all {ei, i = 1, ..., n}
the canonical basis vector in Rn.
a) Bounding E

∣∣∑p
r=0

∑p−r
s=0 A1(t− r, s,m)

∣∣:
It follows from Assumption (A2) that for all b1,b2 ∈ {b ∈ Rn : |b|1 = 1}

max
t

E
∣∣∣∣E [b′1(utu

′
t −Σ)′b2|Ft−m]

∣∣∣∣ ≤ a1 exp(−a2m).

Set {ei, i = 1, ..., n} the canonical basis vector in Rn. It follows from Assumptions
(A1) - (A2) that for j ≤ m− s− 1:

E|e′kΦjE[(ut−s−ju
′
t−s−j −Σ)|Ft−m]Φ′j+sel|

≤ |φj,k|1||φj+s,l|1 max
t

EE[b′1(ut−s−ju
′
t−s−j −Σ)b2|Ft−m]|

≤ c̄Φe
−cφ(j+s)γ1e−2cφj

γ1 [a1e
−a2(m−j−s)γ2 ]

Let 0 < γ ≤ 1 and mγ

p
> ( 2

γ+1
)(2 + 1.4

c
) then c(m − p)γ − log(p + 1) ≥ c(m/2)γ.

Rewriting the inequality, we have to show that (m/p − 1)γ − (m/2p)γ > 2 log(p +

1)/cpγ. In the LHS, a second order Taylor series expansion yields (2a−1)γ−aγ ≥
γ a−1

a
aγ(1 − 1−γ

2
a−1
a

) ≥ γ+1
2

a−1
a
aγ, for a > 1. Set a = m/2p, so that γ+1

2
(m−2p

m
)(m

2p
)γ ≥

log(p + 1)/cpγ. As for the RHS, log(p + 1)/p < 0.7. Combining bounds above we
show our claim.

Note that for a, b ≥ 0 and 0 < γ ≤ 1 aγ + bγ = (a + b)γ[xγ + (1 − x)γ] where
x = a/(a+ b), and 1 ≤ [xγ + (1− x)γ] ≤ 2 for x ∈ [0, 1]. Now, let 0 < γ ≤ 1 and c > 0,
then

∑n
j=0 e

−cjγ ≤
∫ n

0
e−cx

γ
dx = c1/γ/γΓ(1/γ, n) ↑ c1/γΓ(1/γ + 1) < ∞, as n → ∞,

where Γ(a, n) =
∫ n

0
xa−1e−xdx ↑

∫∞
0
xa−1e−xdx = Γ(a) are the incomplete gamma

function and gamma function, respectively.



24 RICARDO P. MASINI, MARCELO C. MEDEIROS, AND EDUARDO F. MENDES

Then,

E

∣∣∣∣∣
p∑
r=0

p−r∑
s=0

e′kA1(t− r, s,m)el

∣∣∣∣∣ =

p∑
r=0

p−r∑
s=0

m−r−s−1∑
j=0

E
∣∣e′kΦjE[ut−r−s−ju

′
t−r−s−j −Σ|Ft−m]Φ′j+sel

∣∣
≤ c̄Φa1

p∑
r=0

p−r∑
s=0

m−r−s−1∑
j=0

e−cφ(j+s)γ1e−2cφj
γ1e−a2(m−r−j−s)γ2

≤ c̄Φa1

p∑
r=0

e−(cφ∧a2)(m−r)γ2∧γ1

p−r∑
s=0

m−r−s−1∑
j=0

e−cφj
γ1

≤ c̄Φa1

c
1/γ1

φ Γ(1/γ1)

2γ1

(p+ 1)2e−(cφ∧a2)(m−p)γ2∧γ1

≤ b1e
−(cφ∧a2)(m/2)γ2∧γ1

b) Bounding E
∣∣∑p

r=0

∑p−r
s=0 e

′
kA2(t− r, s,m)el

∣∣:
Let maxb1,b2,t E |b′1(utu

′
t −Σ)b2| ≤ 2Λmax(Σ) where b1,b2 ∈ {b ∈ Rn : |b|1 = 1}. It

follows from Lemma 7 after rearranging terms:

E

∣∣∣∣∣
p∑
r=0

p−r∑
s=0

e′kA2(t− r, s,m)el

∣∣∣∣∣ ≤
p∑
r=0

p−r∑
s=0

∞∑
j=0

E
∣∣e′kΦm+j(ut−r−m−ju

′
t−r−m−j −Σ)Φ′m−s+jel

∣∣
≤

p∑
r=0

p−r∑
s=0

∞∑
j=m

|φj,k|1|φj−s,l|1 max
b1,b2,t

E |b′1(utu
′
t −Σ)b2|

≤ 2Λmax(Σ)c̄2
Φ

p∑
r=0

p−r∑
s=0

∞∑
j=m

e−cφj
γ1e−cφ(j−r)γ1

= 2b2

(
p∑
r=0

p−r∑
s=0

1

)
∞∑

j=m−p

e−2cφ(j−r)γ1

= b3

[
(p− 1)(m− p)(1−γ1)/2e−cφ(m−p)γ1

]2
≤ b3(eγ1)

− 1−γ1
γ1 e−2γ1cφ(m/2)γ1 ,

were b3 =
√

2b2
cφγ1(1+γ1)2 . In the last line, we use mγ1

p
> ( 2

γ1+1
)(2 + 1.4

2γ1cφ
) for m suffi-

ciently large:

(p− 1)(m− p)(1−γ1)/2e−cφ(m−p)γ1

≤ e−
1−γ1

2
(cφ(m−p)γ1−log(m−p)) × e−γ1cφ(m/2)γ1−log(p+1)(p+ 1)

≤ (eγ1)
− 1−γ1

2γ1 e−γ1cφ(m/2)γ1

c) Bounding
∑p

r=0

∑p−r
s=0 Aj(t− r, s,m) (j = 3, 4):
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Under Assumption (A1)-(A3), for all b ∈ Rn with |b|1 = 1,

E|e′rΦm+jut−m−ju
′
t−m−j−kΦm−s+j+kes|

≤ |φm+j,r|1|φm−s+j+k,s|1 max
t
‖b′ut‖2

2

≤ b2e
−cφ(m+j)γ1−cφ(m−s+j+k)γ1 ,

where b2 = c̄2
ΦΛmax(Σ). As before, if we have ut−r−s−j we must replace m my m−r.

It follows from Lemma 7, mγ1

p
> ( 2

γ1+1
)(2 + 1.4

2γ1cφ
) and m sufficiently large:

p∑
r=0

∞∑
j=0

e−cφ((m−r+j)γ1

p−r∑
s=0

∞∑
k=0

e−cφ(m−r+j+k−s)γ1

≤

(
p∑
r=0

p−r∑
s=0

1

)
∞∑
j=0

e−cφ((m−p+j)γ1

∞∑
k=0

e−cφ(m−p+j+k)γ1

≤ b4

(
(p+ 1)(m− p)1−γ1e−cφ(m−p)γ1

)2

≤ b4

(
e−(1−γ1)(cφ(m−p)γ1−log(m−p)) × e−γ1cφ(m/2)γ1−log(p+1)(p+ 1)

)2

≤ b5e
−2γ1cφ(m/2)γ1 ,

where b4 = 3
(1+γ1)3c2φγ

2
1
, b5 = b4(eγ1)

−2
1−γ1
γ1 .

Then, it follows that

(B.6)
p∑
r=0

p−r∑
s=0

∞∑
k=1

∞∑
j=0

E|e′iΦm+jut−m−ju
′
t−m−j−kΦm−s+j+kel| ≤ b6e

−2γ1cφ(m/2)γ1 .

where b6 = b2b5 =
3c̄2ΦΛmax(Σ)(eγ1)

−2
1−γ1
γ1

(1+γ2)3c2φγ
2
1

.
d) Combining bounds:

Finally combining the three bounds above and setting m satisfying mγ1∧γ2

p
>

( 2
γ1∧γ2+1

)(2 + 1.4
2γ1cφ∧a2

) :

p∑
r=0

p−r∑
s=0

E
∣∣∣∣ max

1≤i,j<n

1

T
E|

T∑
t=p+1

E[e′iyt−ry
′
t−r−sej|Ft−m]− E[e′iyt−ry

′
t−r−sej]

∣∣∣∣
≤ n2

(
b1e
−(cφ∧a2)(m/2)γ2∧γ1 + b6e

−2γ1cφ(m/2)γ1
)
,

(B.7)

where b7 = b3(eγ1)
− 1−γ1

γ1 + 2b6

Combining Tail and Covariance:
Set m = T , then we require that

p <
T γ1∧γ2

( 2
γ1∧γ2+1

)(2 + 1.4
2γ1cφ∧a2

)
.
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Then, combining bounds:

Pr (‖ΓT − Γ‖max ≥ ε) ≤ 2
1

T
exp

(
2 log(npT )− Tε2

2M2 +Mε

)
+ 8e2 log(npT )−Mα/τα

+
n2

ε

(
b1e
−a2∧cφ(T/2)γ2∧γ1 + b7e

−2γ1cφ(T/2)γ1
)
,

where τ , b1 and b5 are as above. Let ξ > 0 and Mα = (2 + ξ)τα log(npT ), by
assumption Tε2 ≥ 2(1 + ξ)1+2/ατ 2[log(npT )]1+2/α which implies that 2 log(npT ) −

Tε2

2M2+Mε
≤ −ξ log(npT ). Finally,

Pr (‖ΓT − Γ‖max ≥ ε) ≤ 2

(np)ξT 1+ξ
+

8

(np)ξT ξ
+
n2

ε

(
b1e
−a2∧cφ(T/2)γ2 + b8e

−2γ1cφ(T/2)γ1
)
.

�

Lemma 7. Let 0 < a ≤ 1 b > 0, n ≥
(
ba(1+a)√

2−1

)1/(1−a)

. Then

(B.8)
∞∑
i=n

∞∑
j=0

e−bi
a−b(i+j)a ≤ 6

(1 + a)3b2a2

[
n(1−a)e−bn

a]2
,

and

(B.9)
∞∑
i=n

e−bi
a ≤

√
2

ba(1 + a)2
n1−ae−bn

a

.

Proof. Let V denote a Weibull(a,2b) random variable.
∞∑
i=n

∞∑
j=0

e−bi
α−b(i+j)α =

∞∑
j=n

(j − n+ 1)e−2bjα

=
∞∑
j=n

(j − n+ 1)E[I(V ≥ j)]

=
∞∑
j=n

(j − n+ 1)2E[I(j ≤ V < j + 1)]

≤ E[(V − n+ 1)2I(V ≥ n)].

It follows from a second order Taylor expansion that for x ∈ [0, 1],

(1 + x)a − xa ≥ axa−1 − a(1− a)

2
xa−2 ≥ a(1− a)

2
xa−1,

and
(1 + x)a − 1 ≥ ax− a(1− a)

2
x2 ≥ a(1− a)

2
x.
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Then, for v ≥ n, set 0 < x = n/v ≤ 1

(v + n)a − na = va [(1 + x)a − xa] ≥ a(1− a)

2

(v
n

)1−a
va =

a(1− a)

2
na−1v,

and for 0 ≤ v ≤ n, set 0 ≤ x = v/n ≤ 1

(v + n)a − na = na [(1 + x)a − 1] ≥ a(1− a)

2

v

n
na =

a(1− a)

2
na−1v.

Therefore, (v+n)a−na > a(1−a)
2

na−1v for v ≥ 0. Also (n+v)a−1 ≤ na−1. Now we may
bound the conditional expected value. Let X denote an exponential random
variables with parameter λ = ba(1 + a)na−1:

E[(V − n+ 1)2|I(V ≥ n)] =

∫ ∞
n

(v − n+ 1)2 2bava−1e−2bva

e−2bna
dv

=

∫ ∞
0

(x+ 1)22ba(x+ n)a−1e−2b[(x+n)a−na]dx

≤
∫ ∞

0

(x+ 1)2bana−1e−ba(1+a)na−1xdx

=
2

1 + a
E(X + 1)2

=
2

1 + a

(
2 + 2λ+ λ2

λ2

)
≤ 6

(1 + a)3b2a2
n2(1−a),

where in the last line we note that n ≥ ( ba(1+a)√
2−1

)1/(1−a) implies λ ≤
√

2− 1.
Finally, the first bound follows because

E[(V − n+ 1)2I(V ≥ n)] = E[I(V ≥ n)E[(V − n+ 1)2|I(V ≥ n)]]

≤ 6

(1 + a)3b2a2
n2(1−a)e−2bna .

The second bound follows after similar arguments:
∞∑
i=n

e−bi
a ≤ E[(n+ 1)I(V > n)]

≤ 1

1 + a
E(X + 1)e−bn

a

≤
√

2

ba(1 + a)2
n1−ae−bn

a

.

�
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