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Abstract

Factor and sparse models are two widely used methods to impose a low-dimensional struc-
ture in high dimension. They are seemingly mutually exclusive. In this paper, we propose a
simple lifting method that combines the merits of these two models in a supervised learning
methodology that allows to efficiently explore all the information in high-dimensional datasets.
The method is based on a flexible model for panel data, called factor-augmented regression
model with both observable, latent common factors, as well as idiosyncratic components as
high-dimensional covariate variables. This model not only includes both factor regression and
sparse regression as specific models but also significantly weakens the cross-sectional depen-
dence and hence facilitates model selection and interpretability. The methodology consists of
three steps. At each step, remaining cross-section dependence can be inferred by a novel test
for covariance structure in high-dimensions. We developed asymptotic theory for the factor-
augmented sparse regression model and demonstrated the validity of the multiplier bootstrap
for testing high-dimensional covariance structure. This is further extended to testing high-
dimensional partial covariance structures. The theory and methods are further supported by
an extensive simulation study and applications to the construction of a partial covariance net-
work of the financial returns and a prediction exercise for a large panel of macroeconomic time
series from FRED-MD database.
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1 Introduction

With the emergence of new and large datasets, the correct characterization of the dependence among

variables is of substantial importance. Usually, to achieve this goal, the literature has followed two

seemingly orthogonal tracks. On the one hand, factor models have become an essential tool to sum-

marize information in large datasets under the assumption that the remaining dependence structure

is negligible. For instance, panel factor models are applied now to a wide variety of important ap-

plications, ranging from forecasting (macroeconomic) variables and asset pricing models to causal

inference in applied microeconomics and network analysis. On the other hand, there have been

major advances on parameter estimation in ultra high-dimensions under the assumption of sparsity

or weak-sparsity. That is, a variable depends only on a (very) small subset of the other variables.

In this paper, we take an alternative route and combine the best of the two worlds described above

in order to better characterize the dependence structure of high-dimensional data. More specifically,

we consider that the covariance structure of a large set of variables, organized in a panel data

format, is characterized as a combination of a factor structure, where factors can be either observed,

unobserved, or both, and a weakly-sparse idiosyncratic component. This formulation is general

enough in order to accommodate a very large number of data generating processes of interest in

economics, finance, and related areas. The proposed methodology has two ingredients: a three-step

estimation procedure and a new test for structure in high dimensional (partial) covariance matrices.

The steps of the estimation procedure are as follows. In the first one, we take the original data and

remove the effects of any observed factors. These factors can be deterministic terms such as seasonal

dummies and/or trends or any other observed covariates. The first step can be parametric or

nonparametric, low or high dimensional. A latent factor model is then estimated using the residuals

from the first stage. Finally, in a final step we model the dependence among idiosyncratic terms

as a weakly sparse regression estimated by the Least Absolute Shrinkage and Selection Operator

(LASSO). At each step, the null-hypothesis of no remaining cross-section dependence can be tested

by the proposed test for the (partial) covariance structure in high-dimensions.

1.1 Motivation

Let Y t :� pY1t, . . . , Yntq1 be a random vector generated by a factor model as Yit � λ1iF t � Uit,

for i � 1, . . . , n, t � 1, . . . , T , where Σ :� EpU tU
1
tq, with U t :� pU1t, . . . , Untq1, is not necessarily

diagonal. Fix one component of interest i P t1, . . . , nu, which serve as a response variable. Consider
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the following prediction models:

M1 : EpYit|Y �itq, M2 : EpYit|F tq, and M3 : EpYit|F t,U�itq, (1.1)

where Y �it and U�it are, respectively, vectors with the elements of Y t and U t excluding the i-th

entry. Note that model M3 is indeed the factor augmented regression model since it is the same as

EpYit|F t,Y �itq. As the paper will mainly focus on linear regressions, we will refer more specifically�M3 below as the factor-augmented regression model.

Suppose that we observe both F t and U�it. Which one of three models above is best in terms

of mean square error (MSE) for prediction? Comparison between M1 and M2 is not clear since it

depends, among others, on the magnitude of Σ relative to Λ1Λ, where Λ :� pλ1, . . . ,λnq1. However,

since the σ-algebras generated by Y �it and F t are both included in the σ-algebra generated by

pF t,U�itq, it is not surprising that MSEpM3q ¤ minrMSEpM1q,MSEpM2qs. The same will hold

true if we replace the models in (1.1) by their best linear projections, which we denote by �Mj for

j P t1, 2, 3u, since the linear space �M3 is the largest. In this case, we can explicitly write the “gains”

of �M3 when compared to �M1 and �M2:

MSEp�M3q �MSEp�M1q � �θ1iΣ�i,�iθi

MSEp�M3q �MSEp�M2q � �∆1i∆
1
1i �∆1

2iΣ�i,�i∆2i,

where θi and βi are the coefficients of the projection of Uit onto U�it and the coefficients of

the projection of Xit onto X�it, respectively; Σ�i,�i is Σ excluding the i-th row and column;

∆1i :� Λi � β1iΛ�i and ∆2i :� βi � θi. From the previous expressions, it becomes evident that

both �M1 and �M2 are restrictions on �M3. Broadly speaking, whenever one does not expect to

have an exact factor model, there are potential gains of taking into account the contribution of

the idiosyncratic components U�it. Therefore, we use �M3 as the base model for the estimation

methodology described in Section 2.2.

1.2 Main Contributions and Comparison with the Literature

The contributions of this paper are multi-fold. First, our methodology bridges the gap between two

apparently competing methods for high-dimensional modeling; see, for example the discussion in

Giannone et al. (2018) and Fan et al. (2020). This yields a vast number of potential applications and
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spin-offs. For instance, in Fan et al. (2020), we apply the methods developed in here to evaluate

the effects of interventions and we contribute to the literature on synthetic controls and related

methods by combining the approaches of Gobillon and Magnac (2016) and Carvalho et al. (2018).

Therefore, in our setup both a common factor structure and weak sparsity can coexist.1

Second, our results can also serve as a diagnostic and misspecification tool. For panel data

models with interactive fixed effects as in Moon and Weidner (2015) and Bai and Liao (2017), our

test can be directly applied to uncover the dependence structure among cross-sectional units before

and after accounting for common factor components. If the factor structure is informative enough,

we expect the idiosyncratic covariance matrix to be almost sparse. If this is not the case, we may

have possibly underestimated the number of factors. One popular application is in asset pricing

as discussed in Gagliardini et al. (2019) and in the empirical section of this paper. There are a

huge number of proposed factors as described in Feng et al. (2020), Giglio and Xiu (2020), and Gu

et al. (2020). We can apply our methodology not only to test for omitted factors, but, as well, to

estimate network connections among firms as in Diebold and Yilmaz (2014) and Brownlees et al.

(2020). Finally, as a diagnostic tool, our paper tackle the same problem as Gagliardini et al. (2019).

However, we take an alternative solution strategy which relies on a much different set of hypothesis;

see also Gagliardini et al. (2020).

Third, the methodology proposed here contributes to the forecasting literature. For instance, in

the second application considered in this paper, we build forecasting models for a large cross-section

of macroeconomic variables. We call this method the FarmPredict. We show that the combination

of factors and a sparse regression strongly outperforms the traditional principal component regres-

sion as in Stock and Watson (2002a,b). Therefore, FarmPredict can be an additional contribution

to the forecasting and machine learning toolkit. The method can be easily extended to a multi-

variate setting combining factor-augmented vector autoregressions (FAVAR) as in Bernanke et al.

(2005) with sparse vector models as in Kock and Callot (2015) and Masini et al. (2019).

Fourth, we show consistency of factor estimation based on the residuals of a first-step regression.

Our results hold for both parametric (linear or nonlinear) and nonparametric first stage. A high-

dimensional first stage is also allowed. Note that, current results in the literature consider that

factors are estimated based on observed data and our derivations favor a much more flexible and

general setup (Bai and Ng, 2002, 2003, 2006). More specifically, our methodology favors settings

1Sparsity and factor models can also coexist in the framework of sparse principal components; see Fan et al.
(2020).
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where there are both observed and latent factors, as well as trend-stationary data. In the later, the

trend can be first removed by (nonparametric) first-stage regression.

Fifth, we also contribute to the LASSO literature. LASSO can not be model selection consistent

for highly correlated variables. Through the decomposition of covariates into factors and idiosyn-

cratic components, we decorrelate the variables and make the model selection condition much easier

to hold; see, for example, (Fan et al., 2020). We show consistency of the estimates based on resid-

uals of the previous steps. Our results are derived under restrictions on the population covariance

matrix of the data and not on the estimated one, as it is usual in many papers. See, for example,

van de Geer and Bühlmann (2009). Furthermore, we derive our results under much mild conditions

that the ones considered in (Fan et al., 2020).

Finally, we extend the results in Chernozhukov et al. (2013, 2018) to strong-mixing data in order

to construct hypothesis tests for covariance and partial covariance structure in high dimensions.2

This step is necessary for econometrics and financial applications. As side results, in order to

develop the test we first show consistency of kernel-based estimation of a high-dimensional long-run

covariance matrix of dependent process. This is a new result with important consequences for the

theory of high-dimensional regression with dependent errors. We also establish consistency of a new

estimator of the partial covariance matrix in high-dimensions and strong-mixing data. Our proposed

tests can be used to infer, for instance, if the (partial) covariance matrix of a high-dimensional

random vector is diagonal or block-diagonal. More generally, we can test any pre-defined structure.

Furthermore, we show that the test remains valid when we use the residuals from a previous step

estimation to compute the covariance matrix. This result allows us to to apply the test to the

three-stage estimation procedure proposed in this paper. Although our results are derived under

the assumption that the number of factors is known, simulation results presented in the paper

provides evidence that the test have good finite-sample properties even when the number of factors

is determined by data-driven methods commonly found in the literature. Over the past years, a vast

number of papers proposed different methods to test for covariance structure in high dimensions.

See, for example, Ledoit and Wolf (2002), Chen et al. (2010), Onatski et al. (2013), Cai and Ma

(2013), Li and Qin (2014), Zheng et al. (2019), Cai et al. (2016), Zheng et al. (2019), and Guo and

Tang (2020), among many others.3 To the best of our knowledge, we complement all the previous

papers by simultaneously considering high-dimensions, strong-mixing data with mild distributional

2Recently, Giessing and Fan (2020) also extended the results in Chernozhukov et al. (2013). However, their setup
is very different from ours and the authors only consider the case of independent and identically distributed data.

3For a nice recent review, see Cai (2017).
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assumptions, and pre-estimation when constructing tests for both covariance and partial covariance

structure.

1.3 Organization of the Paper

In addition to this Introduction, the paper is organized as follows. We present the model setup and

assumptions in Section 2. The theoretical results are presented in Section 3 with practical guides

given in Section 4. We depict the results of a simulation experiment in Section 5 and discuss the

empirical application in Section 6. Section 7 concludes. All proofs are deferred to the Appendix.

1.4 Notation

All random variables (real-valued scalars, vectors and matrices) are defined in a common probability

space pΩ,F ,Pq. We denote random variables by an upper case letter, X for instance, and its

realization by a lower case letter, X � x. The expected value operator is with respect to the P

law such that EX :� ³
Ω
XpωqdPpωq. Matrices and vectors are written in bold letters X. Except

for the number of factors, r, and number of covariates, k, defined below, all other dimensions are

allowed to depend on the sample size (T ). However, we omit this dependency throughout the paper

to avoid clustering the notation prematurely.

We use } � }p to denote the `p norm for p P r1,8s, such that for a d�dimensional (possibly

random) vector X � pX1, . . . , Xdq1, we have }X}p :� p°d
i�1 |Xi|pq1{p for p P r1,8q and }X}8 :�

supi¤d |Xi|. IfX is a pm�nq possibly random matrix then }X}p denotes the matrix `p-induced norm

and }X}max denotes the maximum entry in absolute terms of the matrix X. Note that whenever X

is random, then }X}p for p P r1,8s and }X}max are random variables. We also reserve the symbol

} � } without subscript for the Euclidean norm } � } :� } � }2 for both vectors and matrices.

For any convex function ψ : R� Ñ R� such that ψp0q � 0 and ψpxq Ñ 8 as x Ñ 8 and

(real-valued) random variable X, we denote its Orlicz norm by }X}ψ, which is defined by }X}ψ :�
inf
!
C ¡ 0 : E

�
ψ
�
|X|
C

	�
¤ 1

)
. Since we are only concerned with polynomial and exponential tails

we restrict ourselves to Orcliz norm induces by the class of function defined by (3.3). Evidently,

as opposed to }X}p, }X}ψp is always a non-negative non-random scalar. We do not abide to any

convention to apply Orcilz norm to vector or matrices to avoid confusion.

For any vector X, diag pXq denote the diagonal matrix whose diagonal is the elements of X.

1pAq is an indicator function on the event A, i.e, 1pAq � 1 if A is true and 0 otherwise. We adopt
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the Landau big/small O, o notation and the “in probability” OP and op analogues. We say that

x is of the same order of y, x � y, if both x � Opyq and y � Opxq. We write X �P Y if both

X � OP pY q and Y � OP pXq. Unless stated otherwise, the asymptotics are taken as T Ñ 8, where

T is the time-series dimension, and the op1q and oP p1q are with respect to the limit as T Ñ 8. We

denote convergence in probability and in distribution by “
pÝÑ” and “ñ”, respectively.

2 Setup and Method

2.1 Data Generating Process

We apply the test for three-stage estimation procedure for a very general panel data model, which is

rich enough in order to nest several important cases in economics, finance and related areas. More

specifically, we define the following the Data Generating Process (DGP).

Assumption 1 (DGP). The process tYit : 1 ¤ i ¤ n, t ¥ 1u is generated by

Yit � γ 1iX it � λ1iF t � Uitlooooomooooon
�:Rit

(2.1)

where X it is a k-dimensional observable (random) vector which may also include a constant term,

F t is a r-dimensional vector of common latent factors, and Uit is a zero mean idiosyncratic shock.4

The unknown parameters are γi P Rk, the factor loadings λi, and the covariance matrix of the

idiosyncratic shocks. Finally, we assume that X it, F t and Uit are mutually uncorrelated.

Remark 1. In Assumption 1 we consider that k, the dimension of X it is finite and fixed. Fur-

thermore, the relation between Yit and X it is linear. This is for the sake of exposition. However,

the theoretical results in this paper are written in terms of the consistency rate of the first-step

estimation. Therefore, the DGP can be made much more general by just changing the rates.

Example 1 (Asset Pricing Models). Suppose Yit is the return of an asset i at time t and let

X it :� X t be a set of k observable risk factors, such as the market returns and or Fama-French

factors as in, for example, Fama and French (1993,2015). F t can be a set of additional, non

observable, risk factors. Several asset pricing models, such as the Capital Asset Pricing Model

(CAPM) of the Arbitrage Pricing Theory (APT) model, are nested into this general framework.

4For simplicity, we assume that all the units i have the same number of covariates (k). The framework can
certainly accommodate situations where ki is a function of i.
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Example 2 (Networks). Model (2.1) also complements the network specifications discussed in

Barigozzi and Hallin (2016,2017b) and Barigozzi and Brownlees (2019). Furthermore, the test

proposed here can be used to detect networks links as in Diebold and Yilmaz (2014) and Brownlees

et al. (2020). For example, Yit can be the (realized) volatility of financial assets and X it :�X t can

be volatility factors as in Brito et al. (2018) and Andreou and Ghysels (2021).

Example 3 (Panel Data Models with Iterative Fixed-Effects). Model (2.1) is the panel model

with iterative fixed-effects considered in Gobillon and Magnac (2016), where the authors propose

an alternative to the Synthetic Control method of Abadie and Gardeazabal (2003) and Abadie et al.

(2010) to evaluate the effects of regional policies. Model (2.1) is also in the heart of the FarmTreat

method of Fan et al. (2020) and the model discussed in Moon and Weidner (2015).

Example 4 (FAVAR). In the case where the index i represents a different dependent (endogenous)

variable and Uit is a dependent process, model (2.1) turns out to be equivalent to the Factor Aug-

mented Vector Autoregressive (FAVAR) model of Bernanke et al. (2005). In this case, X it may also

include lagged dependent variables.

2.2 Three-Stage Method

The method proposed here for estimation, inference and prediction consists of three stages where

at the end of each stage, the covariance structure of the residuals is tested.

1. For each i P t1, . . . , nu run the regression:

Yit � γ 1iX it �Rit, t P t1, . . . , T u,

and compute pRit :� Yit � pγ 1iX it. The first stage may consist of a regression on a constant, a

deterministic time trend and seasonal dummies, for instance, or, as in Example 1, a regression

on observed factors. After removing the contribution from the observables, we can use the

test for the null hypothesis of no remaining (partial) covariance structure to check if the

(partial) covariance of Rit is dense or sparse. If it is dense we move to Step 2. Otherwise,

we jump directly to Step 3. This first parametric, low dimensional step can be replaced by a

nonlinear/nonparametric regression or by a high-dimensional model, when, for example, the

number of observed factors is large. This will be discussed more in the subsequent sections.
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2. Write Rt :� pR1t, . . . , Rntq1 and Rt � ΛF t � U t. The second step consists of estimating Λ

and F t for t � 1, . . . , T using pRt through principal component analysis (PCA) and compute

pU t � pRt � pΛpF t.

After estimating the factors and loadings, we apply our testing procedure to test for remaining

covariance structure in U t. The second-step estimation can be carried out also by dynamic

factor models as in Barigozzi and Hallin (2016,2017,2020) or Barigozzi et al. (2020).

3. Now, define pU�it :� ppU1t, . . . , pUi�1,t, pUi�1,t . . . pUntq1. The third estimation step consists of a

sparse regression to estimate the following model for each i P t1, . . . , nu:

pUit � θ1i pU�it � Vit, t P t1, . . . , T u.

At the end of Steps 2 and 3, we can conduct the relevant inference on the structures of the

covariance or partial covariance matrices. We can also provide updated prediction future outcomes.

We detail those in the next subsection. Also note that the nonzero estimates of θi shed light on the

links among idiosyncratic components.5

2.3 Estimators and Inference Procedure

In a pure prediction exercise one is usually interested in the linear projection of Yit onto pX 1
it,F

1
t,U

1
�itq1,

which results in the factor-augmented regression model (FARM)

Yit � γi1X it � λi1F t � θi1U�it � εit, t P t1, . . . , T u, (2.2)

for each given i, and can be predicted by

pYit :� pγi1X it � pλi1 pF t � pθi1 pU�it; i P t1, . . . , nu. (2.3)

This will be called FarmPredict. Note that model (2.2) is equivalent to using the predictors

Xit,Y �it and F t, which augment predictors Xit,Y �it by using the common factors F t. The form

5The three-stage procedure describe here could be replaced by a single-step joint estimation. However, not only
the computational burden will be much higher, but also the technical challenges will be greater. I belive that the
simplicity of the method is more a blessing than a curse.
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in (2.2) mitigates the collinearity issues in high dimensions.

Model (2.2) also bridges factor regression (θi � 0) on one end and (sparse) regression on the

other end with λi � Λ1
�iθi, where Λ�i is the loading matrix without the ith row. In the latter case,

model (2.2) becomes a (sparse) regression model:

Yit � γi1X it � θi1R�it � εit, t P t1, . . . , T u. (2.4)

In this case, FARM specification as in (2.2) decorrelates the variablesR�i in (2.4). It makes the model

selection consistency much easier to satisfy and forms the basis of FarmSelect in (Fan et al., 2020).

In general, for FARM (2.2) with sparsity, FarmPredict chooses additional idiosyncratic components

to enhance the prediction of the factor regression.

In other applications, the structure of the idiosyncratic components U � pU1, . . . , Unq1 is the

objective of interest. An estimator for Σ � EpU tU
1
tq could be simply given by

pΣ :� 1

T

Ţ

t�1

pU t
pU 1
t. (2.5)

In order to proper understand the (linear) relation between a pair pUit, Ujtq of U t, a simple

covariance estimate sometimes is not enough. In applications, it is often desirable to have a direct

measure of how Uit and Ujt are connected. By direct connection, we meant the relation between

those units removing the contribution of other variables of U t. For this purpose, we use the partial

covariance between Uit and Ujt, defined for any pair i, j P t1, . . . , nu as:

πij :� EpVijtVjitq,

where Vijt :� Uit�ProjpUit|U�ij,tq and ProjpUit|U�ij,tq denotes the linear projection of Uit onto the

space spanned by all the units except i and j, which we denote by U�ij,t. We suggest to estimate

the partial covariance matrix Π :� pπijq by

pΠ :� ppπijq and pπij :� 1

T

Ţ

t�1

pVij,tpVji,t, (2.6)

where pVijt is the residual of the LASSO regression of pUit onto pU�ij,t for i, j P t1, . . . , nu.

We also would like to conduct formal test on the population structure of U t. Specifically, we
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propose a test for the following null hypothesis on the covariance matrix

HΣ
D : ΣD � Σ0

D, D � t1, . . . , nu � t1, . . . , nu, (2.7)

for a given subset D, where ΣD denotes the elements of Σ indexed by D and we allow d :� |D| to

diverge as n, T Ñ 8. For example, to test if Σ is diagonal, D consists of all off diagonal elements

and Σ0
D � 0. To test if Σ is block diagonal, D can be taken to the corresponding off-diagonal

blocks. Similarly, for testing the structure on the partial covariance matrix

HΠ
D : ΠD � Π0

D, D � t1, . . . , nu � t1, . . . , nu. (2.8)

The null hypotheses (2.7) and (2.8) nest several cases of interest in applications. The most

common would be to test for a diagonal or a block diagonal structure in Σ and/or Π. But it also

accommodates other structures.6 The task of estimating Σ is well documented in literature even

in high-dimensional setups; see, for example, Ledoit and Wolf (2004,2012,2017,2020), Fan et al.

(2008), Lam and Fan (2009), or Fan et al. (2013).7

The challenges for testing (2.7) and (2.8) are similar and can be summarized as follows:

1. As we allow for both n and d to diverge to infinite as T grows, sometimes at a faster rate, we

have a high-dimensional test where some sort of Gaussian approximation result for dependent

data must be deployed as we also allow the number covariances to be tested (d) to diverge.

In this case, a high-dimensional long-run covariance matrix must be estimated if one expects

to get (asymptotic) correct test size.

2. We do not directly observe tU tu or tVij,tu. Instead, we have an estimate of both from a

postulated model on observable random variables. Therefore, the estimation error must be

taken into account to claim some sort of asymptotic properties of the test. In fact, it is

not uncommon to obtain estimates of both tU tu and tVij,tu from a multi-stage estimation

procedure as we illustrate later in this paper.

We propose to test (2.7) using the statistic

SΣ
D :� }

?
T ppΣD �Σ0

Dq}max. (2.9)

6With minor changes, the proposed test can also be used to test the null Mvec pΣq �m for some pd�n2q matrix
M and d-dimensional vector m where d :� dT is also a function of T .

7See Ledoit and Wolf (2021a) for a recent survey or the book by Fan et al. (2020).
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The quantiles of SΣ
D are approximated by a Gaussian bootstrap. To describe the procedure, let

ΥΣ denote the pd � dq covariance matrix for the vectorized submatrix prσijqpi,jqPD, where rσij :�
1
T

°T
t�1 Ui,tUj,t. Since the process tU tu might present some form of temporal dependence (refer

to Assumption 3(c)) we estimate ΥΣ using a Newey-West-type estimator. For a given integrable

function kp�q with kp0q � 1 and bandwidth h ¡ 0, ΥΣ is estimated by

pΥΣ :�
¸
|`| T

kp`{hqxMΣ,` and xMΣ,` :� 1

T

Ţ

t�`�1

pDΣ,t
pD1

Σ,t�`, (2.10)

where pDΣ,t is a d-dimensional vector with entries given by pUit pUjt � pσij for pi, jq P D. Finally, let

c�Σpτq be the τ -quantile of the Gaussian bootstrap

S�D :� }Z�
Σ}8; Z�

Σ|X,Y � N p0, pΥΣq.

Theorem 4 demonstrates the validity of Gaussian bootstrap procedure described above, i.e., it states

conditions under which the τ -quantile of the test statistic (2.9) can be approximated by c�Σpτq in

the appropriate sense.

Similarly, the test statistic for (2.8) is given by

SΠ
D :� }

?
T ppΠD �Π0

Dq}max. (2.11)

Let ΥΠ denote the pd� dq covariance matrix of prπijqpi,jqPD where rπij :� 1
T

°T
t�1 Vij,tVji,t. For a given

kernel Kp�q P K and bandwidth h ¡ 0 where the class of kernels K is described below in (3.10), ΥΠ

is estimated by pΥΠ :�
¸
|`| T

Kp`{hqxMΠ,`; xMΠ,` :� 1

T

Ţ

t�`�1

pDΠ,t
pD1

Π,t�`, (2.12)

where pDΠ,t is a d-dimensional vector with entries given by pVij,tpVji,t � pπij for pi, jq P D. Also, let

c�Πpτq be the τ -quantile of the Gaussian bootstrap

S�D :� }Z�
Π}8; Z�

V |X,Y � N p0, pΥV q.

Theorem 5 demonstrate the validity of Gassian bootstrap procedure describe above, i.e., it states

conditions under which the τ -quantile of the test statistic (2.11) can be approximated by c�Πpτq in

the appropriate sense.
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3 Theoretical Results

In this section we collect all the theoretical guarantees for the estimation of the model (2.1) by using

the proposed three-stage method described above. Specifically, Section 3.1 deals with estimation

and Section 3.2 with inference on the (partial) covariance structure of Π.

To present the next results it is convenient to use a more compact notation. For each i � 1, . . . , n,

we define the T -dimensional vectors Y i :� pYi1, . . . , YiT q1 and U i :� pUi1, . . . , UiT q1. We also define

the pT � kq matrix of covariates X i :� pX i1, . . . ,X iT q1 for each i � 1, . . . , n and the pT � rq matrix

of factors F :� pF 1, . . . ,F T q1 such that (2.1) can be represented as

Y i �X iγi � Fλi �U i, i � 1, 2, . . . , n,

�X iγi �Ri,

(3.1)

where Ri :� Fλi �U i.

When no confusion is likely to arise, we also define for each t � 1, . . . , T , the n-dimensional

vectors Y t :� pY1t, . . . , Yntq1 and U t :� pU1t, . . . , Untq1; and the nk-dimensional vector X t :�
pX 1

1t, . . . ,X
1
ntq1. Also, set the pn � nkq block diagonal matrix Γ whose block diagonal is given

by pγ 11, . . .γ 1nq and the pn � rq loading matrix Λ :� pλ1, . . . ,λnq1. Then, (2.1) can also be repre-

sented as

Y t � ΓX t �ΛF t �U t, t � 1, 2, . . . , T

� ΓX t �Rt,

(3.2)

where Rt :� ΛF t �U t.

3.1 Estimation

For the factor model structure we consider the following set of assumptions

Assumption 2 (Factor Model). Assume:

(a) EpF tq � 0, E pF tF
1
tq � Ir and Λ1Λ is a diagonal matrix;

(b) All eigenvalues of Λ1Λ{n are bounded away from zero and infinity as nÑ 8;

(c) }Σ�ΛΛ1} � Op1q; and

(d) }Λ}max ¤ C.
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Remark 2. Assumption 2 is standard in the factor model literature. Note also that the assumption

that EpF tq � 0 is not restrictive as our approach considers a first-step estimation which may include

a constant in the set of regressors. It is also needed for identifiability.

In order to present the results in a unified manner for both light and heavy tail distributions,

we state the next assumption in terms the Orlicz norm of the random variables. Specifically, since

we are only concerned with polynomial and exponential tails we define the following subset of

unbounded, convex, real-valued functions that vanish at the origin:

Ψ :� tψp : R� Ñ R� : ψppxq � xp, p ¥ 6

or ψppxq � x1r0 ¤ xp   p1� pq{ps � rexppxpq � 1s1rxp ¥ p1� pq{ps, p ¡ 0u. (3.3)

Also, for each ψp P Ψ, we define ψp�pxq :� xp�ε for some ε ¡ 0 if ψppxq � xp; otherwise (for the

exponential case) ψp� :� ψp.

Assumption 3 (Moments and Dependency). There exists a constant C   8 and function

ψp P Ψ defined in (3.3) such that, for all i � 1, . . . , n; ` � 1, . . . , k; s, t � 1, . . . , T ; and j � 1, . . . , r:

(a) }Xit`}ψp� ¤ C, }Uit}ψp� ¤ C, }Fj,t}ψp� ¤ C;

(b) }}pX 1
iX i{T q�1}max}ψp� ¤ C;

(c) The process tpX 1
S,t,F

1
t,U

1
tq1, t P Zu is weakly stationary with strong mixing coefficient α sat-

isfying αpmq ¤ expp�2cmq for some c ¡ 0 and for all m P Z, where XS,t denotes the vector

X t after excluding all deterministic (non-random) components.

(d) }n�1{2 rU 1
sU t � EpU 1

sU tqs }ψp� ¤ C;

(e) }n�1{2°n
i�1 λj,iUit}ψp� ¤ C; and

(f) log n � o
�

T p{4

rlog T s2
	

.

A few words about Assumption 3 is in order. Assumptions (3.a) and (3.c) allow us to apply

a Marcinkiewicz-Zygmund type inequality for partial sums to deal with the polinomial tails (Rio

(1994) and Doukhan and Louhichi (1999)) and a Bernstein inequality (Merlevède et al. (2009) -

Theorem 2) to control exponential tails. Moreover, Assumption (3.c) excludes the deterministic

component of X t to accommodate possibly non-random non-stationary (but uniformly bounded by
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(a)) covariates. Assumption (3.d) is only used to prove results for the first-stage estimation in case

it is performed by ordinary least-squares (Theorem 1). Assumption (3.d) controls for the level of

cross-sectional dependence among the units. As we allow the number of units to diverge with T ,

some sort of control on this quantity in necessary which is not implied by p3.cq. Assumption (3.e)

has a similar role to (3.d) but in terms of linear combinations of the the idiosyncratic components.

Assumption (3.e) only bounds the growth rate of the number of units n to be sub-exponential with

respect to T . As a matter of fact, this assumption is only binding in the exponential tail case,

otherwise the rate conditions imposed in the theorems below imply (3.e).

For each i � 1, . . . , n, letRi :� Fλi�U i denote the unobservable error term in (3.1), pγi the least-

squares estimator of γi and pRi :� Y t �X tpγi the vector of residuals. Also set pR :� ppR1, . . . , pRnq1

and R :� pR1, . . . ,Rnq1. We must control for the least-squares estimation error in the first step of

the proposed methodology. The next result gives a bound for the maximum entry of the pn � T q
matrix pR�R when the first-stage is conducted by OLS in a linear setup.

Theorem 1. Under Assumption 3(a)-(d)

max
i,t

} pRit �Rit}ψp{4 ¤
Ck,ψ?
T

}pR�R}max � OP

�
ψ�1
p{4pnT q?

T

�
,

where the Ck,ψ is a constant only depending on k and ψp.

Remark 3. In case the first step of the method involves more complicated estimation, we write

}pR �R}max � OP pωq, where ω :� ωn,T is a non-negative sequence. This will be used in the next

theorems.

Define the pn � T q matrices Y :� pY 1, . . . ,Y T q and U :� pU 1, . . . ,UT q; and the pnk � T q
matrix X :� pX1, . . . ,XT q. We can write (2.1) in the matrix form as

Y � ΓX �ΛF 1 �U . (3.4)

Notice that pR � ΛF 1 � rU where rU :� U � pR �R and pΛ,F q can be estimated by Principal

Component Analysis (PCA), which minimizes

qpΛ,F q :� }pR�ΛF 1}2F , (3.5)
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with respect to Λ and F , subject to the normalization F 1F {T � Ir. The solution pF is the matrix

whose columns are
?
T times r eigenvectors of the top r eigenvalues of pR1 pR and pΛ � pRpF {T .

Since we do not directly observe U , in the third step of our estimation procedure we use pU :�pR � pΛpF 1
instead. Therefore, we must control of the estimation error in the factor model given by

pn � T q matrix pU � U which is the main purpose of Theorem 2 below. Also, it is well know fact

that the loading matrix Λ and the factors F are not separably identified since ΛF t � ΛH 1HF t

for any matrix H such that H 1H � Ir. If we let H :� T�1V �1 pF 1
FΛ1Λ, where V is the pr � rq

diagonal matrix containing the r largest eigenvalues of pR1 pR{T in decreasing order, we have that

HF t is identified as ΛF t is identified.

The result below first appeared in Bai (2003) for the case of fixed pn, T q, and was further extended

to hold uniformly in pi ¤ n, t ¤ T q by Fan et al. (2013). Fan et al. (2020) makes the conditions

modular. However, both consider the case when the factor model is estimated using the true data

as opposed to an “estimated” one as in our case. Therefore, the next result is a generalization that

takes into account that pre-estimation error term.

Theorem 2. Let ω :� ωn,T be a non-negative sequence such that }pR � R}max � OP pωq. Then,

under Assumptions 1 -3 and ψ�1
p pn2q{?T � ψ�1

p pnT qω � Op1q, we have that

(a)

max
t¤T

}pF t �HF t}2 � OP

�
1?
T
� ψ�1

p pT q?
n

� ωψ�1
p{2pnT q

�
,

(b)

max
i¤n

}pλi �Hλi}2 � OP

�
ψ�1
p{2pnq?
T

� 1?
n
� ω

�
,

(c)

} pU �U}max � OP

�
ψ�1
p pnqψ�1

p pT q?
T

� ψ�1
p pT q?
n

� ωψ�1
p{2pnT q

�
.

By setting ω � 0, i.e., no estimation error in the first step, we recover Theorem 4 and Corollary

1 in Fan et al. (2013) under sub-Gaussian assumption. Also it is important to notice that in order to

have the error } pU�U}max vanishing in probability we must have the pre-estimation error }pR�R}max

of order (in probability) smaller than 1{ψ�1
p{2pnT q.

We have decided not to replace ω in Theorem 2 with the rate obtained in Theorem 1 as the

latter only applies to the least square estimator. In some applications, however, the first step of

the procedure could be done using a different type of estimator. For instance a penalized adaptive
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Huber regression (Fan et al., 2017) if the number of features k is comparable or even larger than

T and the tail of the distribution is heavy. By stating the Theorem 2 in terms of a generic rate, it

is easier to account for the effect of a different estimator. By combining Theorem 1 and 2 we have

the following corollary

Corollary 1. Under the same assumptions of Theorems 1 and 2, for the OLS used in the first-stage

to obtain pR, we have

} pU �U}max � OP

�
ψ�1
p{6pnT q?

T
� ψ�1

p pT q?
n

�
.

In particular for the sub-Gaussian case (ψpxq � exppx2q � 1) we have

} pU �U}max � OP

�
rlogpnT qs3?

T
�
c

log T

n

�
,

and for polynomial tails (ψpxq � xp)

} pU �U}max � OP

�
n6{p

T 1{2�6{p �
T 1{p
?
n

�
.

For notational convenience, for each i P t1, . . . , nu, consider the split U 1 � pU i,U�iq where

U i is a T -dimensional vector and U�i a T � pn � 1q-dimensional matrix. Analogously, we splitpU 1 � p pU i, pU�iq. Then for a the penalized parameter ξ ¥ 0, the LASSO objective function can be

written for each i P t1, . . . , nu

Lpθq � Penaltypθq :� 1

T
} pU i � pU�iθ}2 � ξ}θ}1. (3.6)

To ensure a consistent estimation of θ, a sort of restricted strong convexity of the objective

function is required when n ¡ T . This in turns is ensured, in the case of a quadratic loss, by bounding

the minimum eigenvalue on pU 1
�i pU�i{T away from zero restrict to a cone (refer to Negahban et al.

(2012) or Fan et al. (2020) for a thorough discussion). Here, we adopt the compatibility constant

defined in van de Geer and Bühlmann (2009). For an index S � t1, . . . , nu and any n-dimensional

vector v, let vS be the vector containing only the elements of the vector v indexed by S. Thus,

#vS � #S and Sc :� Szt1, . . . , nu is the complement of S.

Definition 1. For an n � n matrix M , a set S � t1, . . . , nu and a scalar ζ ¥ 0, the compatibility
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constant is given by

κpM ,S, ζq :� inf

#
}x}M

a|S|
}xS}1 : x P Rn : }xSc}1 ¤ ξ}xS}1

+
, (3.7)

where }x}M � x1Mx. Moreover, we say that pM ,S, ζq satisfies the compatibility condition if

κpM ,S, ζq ¡ 0.

Notice that the square of the compatibility constant is close related to the minimum of the

`1-norm of the eigenvalues of Σ restricted to a cone in Rn.

Theorem 3. Let η :� ηn,T be a non-negative sequence such that } pU �U}max � OP pηq and consider

Assumption 3. For every ε ¡ 0 there is a constant 0   C   8 such that if the penalty parameter is

set to

ξ � C

�
ψ�1
p{2pnq?
T

� ηψ�1
p pT q

�
(3.8)

and s0 :� maxi¤n |S0,i| where S0,i :� tj : θi,j � 0u obeys

s0 � O

��κ0

�
η
�
ψ�1
p pnT q � η

�� ψ�1
p{2pn2q?
T

��1
�� , (3.9)

with κ0 :� mini¤n κi and κi :� κ
�
EpU 1

�iU�iq{T q,S0,i, 3
�

defined in (3.7). Then, for any minimizerpθi of (3.6), with probability at least 1� ε:

T�1ppθi � θiq1U 1
�iU�ippθi � θiq � ξ}pθi � θi}1 ¤ 8

ξ2s0

κ0

. i P t1, . . . , nu,

where the left right side is taken to be �8 whenever κ0 � 0.

Remark 4. Notice that we apply the compatibility condition on the non-random covariance matrix

EpU 1
�iU�iq{T instead of the estimated random covariance matrix pU 1

�i pU�i{T or the “unobservable”

random matrix U 1
�iU�i{T . Careful review of the proofs reveals that the same is true for the gradient

of the objective function that defines our parameter via a first order condition.

Once again, we purposely avoided to replace η in Theorem 3 with the rate of Corollary 1 to make

it readily applicable to the case when a different type of factor models was used or, as a matter of

fact, any other pre-estimation procedure. By plugging the rate of Corollary 1 into η we have the

next corollary
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Corollary 2. If η defined in Theorem 3 is taken to be rate given by Corollary 1 and the compatibility

condition holds, i.e.: κ0 ¥ C ¡ 0 then under the conditions of the Theorem 3:

max
i¤n

}pθi � θi}1 � OP

��
ψ�1
p pT qψ�1

p{6pnT q?
T

�
ψ�1
p{2pT q?
n

�
s0

�
.

3.2 Inference

We now obtain the null distributions of our test statistics for the structures of the covariance and

the partial covariance. Recall the setup and notation of section 2.3. In particular, we consider the

kernel kp�q appearing in the covariance estimator defined by (2.10) belongs to the class defined in

Andrews (1991) which we reproduce below for convenience

K :� tf : RÑ r�1, 1s : fp0q � 1, fpxq � fp�xq, @x P R,
»
f 2pxqdx   8, f is continuousu. (3.10)

It includes most of the well-known kernel used in density estimation literature such as the truncated,

Bartlett, Parzen, Quadractic Spectral, Tukey-Hanning among others. To avoid confusion, it is worth

to point out that our tunning parameter h, also called bandwith parameter by Andrews (1991), is

supposed to diverge, as opposed to the bandwith in the density kernel estimation setup, which is

expected to shrink towards zero.

Theorem 4. Let η :� ηn,T and ν :� νn,T be non-negative sequence such that } pU �U}max � OP pηq
and maxi,t } pRit �Rit}ψp � Opνq and K P K. Under Assumptions 1-3, if further

(a) tU tu is fourth-order stationary process

(b) }diagpΥΣq}8 ¥ c for some c ¡ 0

(c) As h, n, T Ñ 8:

(c.1)
plognq7{6ψ�1

p{2
pnq

T 1{6 �
?
log T lognψ�1

p{2
pnqψ�1

p{2
pT 1{4q

T 1{4 � op1q

(c.2) plog nq3h
�
ηpψ�1

p pnT qq3 � ψ�1
p{4pn4q{?T

�
� op1q

(c.3) plog nq3
�?

Tη2 � r1?
T
� r2?

n
� r3ν

	
� op1q,

where the rates r1, r2, r3 are defined in Lemma B.10 and h ¡ 0 is the bandwidth parameter of the
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covariance estimator defined in (2.10); then

}pΥΣ �ΥΣ}max � OP

�
h
�
η
�
ψ�1
p pnT q�3 � ψ�1

p{4pn4q{
?
T
	�

� op1q,

and

sup
D

sup
τPp0,1q

|P �SΣ
D ¤ c�Σpτq

�� τ | � op1q,

where the first supremum is over all null hypotheses of the form (2.7) indexed by D P t1 : nu�t1 : nu.

Remark 5. The rate assumptions (c.1)-(c.3) in Theorem 4 seem over complicated. However,

they are a direct consequence of having the first and second step estimation error rates, ν and

η respectively, explicitly appearing in the final rate and the general tail condition through the ψpp�q
function. It allows the practitioner to directly adjust the final rate should (s)he prefer to employ

different intermediate estimators. For instance, a LASSO estimator in the first step in case the

number of covariates k is large enough or estimate the factor model by PCA variants. If we were to

specialized to the sub-Gaussian case and incorporate the rates obtain in Theorem 1 and Corollary 1

we have the following Corollary

Corollary 3. Consider the sub-Gaussian whereψ2pxq � exppx2q. Suppose that the Assumptions 1-3

and conditions paq and pbq of Theorem 4 hold. If the rates ν and η are set to be rates given by

Theorem 1 and Corollary 1, respectively, then the conclusion of Theorem 4 holds provided that as

h, n, T Ñ 8:

(a) log n � opT 1{18q

(b) h
�
plognq15{2?

T
� plognq5?

n

�
� op1q

(c) plognq3plog T q?T
n

� op1q.

Remark 6. Careful review of its proof reveals that (d.1) traces back to the Gaussian Approximation

of the (unobservable) process
!

1?
T

°T
t�1U tU

1
t � EU tU

1
t

)
T¥1

; whereas (d.3) controls for the differ-

ence between U t� pU t and, therefore, takes into account the estimation error of the first and second

steps. Note the presence of ν and η in (d.3) which are absent in (d.1) Finally, (d.2) make sure that

the bootstrap constructed in terms of the estimated covariance matrix is close to the bootstrap based

in the true covariance. Note the presence of the bandwidth parameter h in (d.2).
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Remark 7. In order to establish the rate of convergence in the last result of Theorem 4 we need an

upper bound on the tails of the pre-estimation error namely }pZ�Z}max. In fact, we need to control

the tails of the factor model estimation to establish uniform bounds on }pUit �Uit}ψ, which translate

into obtain bounds on maxjt } pFjt � Fjt}ψ and maxji }pλji � λji}ψ.

Theorem 5. Let η :� ηn,T and ν :� νn,T be non-negative sequence such that } pU �U}max � OP pηq
and maxi,t } pRit � Rit}ψp � Opνq and K P K defined by (3.10). Under Assumptions 2-4 and the

LASSO regularization parameter as in 3.8, if further

(a) tU tu is fourth-order stationary process

(b) }diagpΥΠq}8 ¥ c for some c ¡ 0

(c) As n, T Ñ 8:

(c.1)
plognq7{6ψ�1

p{2
pnq

T 1{6 �
?
log T lognψ�1

p{2
pnqψ�1

p{2
pT 1{4q

T 1{4 � op1q

(c.2) plog nq3h
�
s0

�
η � ξψ�1

p pnq� �s0ψ
�1
p pnT q�3 � s0

ψ�1
p{4

pn4q?
T



s � op1q

(c.3) plog nq3
�
s2

0

!
r1?
T
� r2?

n
� r3ν � ξψ�1

p pnq � ?
T
�
η � ξψ�1

p pnq�2)	 � op1q,

where the rates r1, r2, r3 are defined in Lemma B.10, Kp�q and h ¡ 0 is the bandwidth parameter of

the covariance estimator defined in (2.12); then

}pΥΠ �ΥΠ}max � OP

�
h

#
s0rη � ξψ�1

p pnqsrs0ψ
�1
p pnT qs3 � s0

ψ�1
p{4pn4q?
T

+�
� op1q

and

sup
D

sup
τPp0,1q

|PpSΠ
D ¤ c�Πpτqq � τ | � op1q under HΠ

0 ,

where the first supremum is over all null hypotheses of the form (2.8) indexed by D P t1�nu�t1�nu.

Remarks and Corollary analogous to Remarks 5-7 and Corollary 3 after Theorem 4 apply to

Theorem. 5.

Remark 8. As opposed to the case of testing covariance, when testing partial covariance in high-

dimensional setup, the sparse structure plays a role in terms of s0 appearing in the rates (d.2) and

(d.3). Therefore, these assumptions restricts the cases when the proposed partial convariance test

has the correct asymptotic size. For instance, in the case of a complete dense partial covariance

structure, i.e, all the regressors are active in all LASSO regressions we are likely to have s0 of order

of n and, therefore, pd.2q and pd.3q are not expected to hold.
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4 Guide to Practice

As described before the methodology in this paper involves three steps. The first step consists of

identifying known covariates that we may want to control for. This first step may involve the removal

of deterministic trends and seasonal effects, for instance. This can be done either by parametric

or nonparametric regressions. It is important to notice, however, that the convergence rates of the

estimations in the subsequent steps will be influenced by the convergence rate of the estimation in

the first part of the procedure.

After the data is filtered in the first step, one can test for remaining covariance structure. For

instance, if the covariance matrix of the filtered data is (almost) diagonal, there is no need to

estimate a latent factor structure and the practitioner may jump directly to the third step of the

method.

On the other hand, if the covariance of the first-step filtered data is dense, a latent factor model

should be considered and the number of factors must be determined. There are a number of methods

proposed in the literature to achieve this goal. In this paper we consider either the eigenvalue ratio

test of Horenstein (2013) or the information criteria put forward in Bai and Ng (2002). The factors

can be estimated by the usual methods.

The last step involves a sparse regression in order to estimate any remaining links between

idiosyncratic components. Before running the last step, the practitioner may test for a diagonal

covariance matrix of the idiosyncratic terms. If the null is not rejected, there is no need for additional

estimation. In case of rejection, the user can proceed with a LASSO regression. We recommend that

the penalty term of the LASSO is selected by Bayesian Information Criterion (BIC) as advocated

by Medeiros and Mendes (2016).

Finally, we would like to include a remark about the estimation of the long-run matrices when

constructing the statistics for the tests of no remaining covariance structure. Usual methods dis-

cussed in the literature can be used here to select the kernel and the bandwidth. In the paper we

use the simple Bartlett kernel with bandwidth given as tT {3u.

5 Simulation

In this section we report simulation results to assess the finite-sample performance of the methodol-

ogy depicted in this paper. The simulations are divided into two parts. In the first one, we evaluate
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the finite-sample properties of the test for remaining covariance structure. In the second part, we

highlight the informational gains when considering both the common factors and the idiosyncratic

component.

We simulate 1,000 replications of the following model for various combinations of sample size

(T ) and number of variables (n):

Y it � Λ1
iF t �Wit, (5.1)

F t � 0.8Ir �Et, (5.2)

Wit � φWit�1 � Uit, (5.3)

Uit �

$''&''%
θ12U2t � θ13U3t � θ14U4t � θ15U5t �Oit if i � 1

Oit otherwise,

(5.4)

where tOitu is a sequence of independent Gaussian random variables with zero mean and variance

equal to 0.25, tEtu is a sequence of r-dimensional independent random vectors normally distributed

with zero mean and identity covariance, and Ir is an r � r identity matrix. Furthermore, tOitu
and tEtu are mutually independent for all time periods, factors and variables. For each Monte

Carlo replication, the vector of loadings is sampled from a Gaussian distribution with mean -6 and

standard deviation 0.2 for i � 1 and mean 2 and unit variance for i � 2, . . . , n. The value of φ is

either 0 or 0.5. The coefficients θ12, θ13, θ14, and θ15 are equal to zero or 0.8, 0.9, -0.7, and 0.5,

respectively. We set the true number of factor to be r � 3.

5.1 Test for Remaining Covariance Structure

We start by reporting results for the test of no remaining structure on the covariance matrix of U t �
pU1t, . . . , Untq1. The null hypothesis considered is that all the covariances between the first variable

(i � 1) and the remaining ones are all zero. For size simulations we set θ12 � θ13 � θ14 � θ15 � 0

in the DGP. In order to evaluate the effects of factor estimation as well as the methods in selecting

the number of factors, we consider the following scenarios: (1) factors are known and there is no

estimation involved; (2) factors are estimated by principal components but the number of factors

are known; (3) the number of factors is determined by the eigenvalue ratio procedure of Horenstein

(2013); (4)-(7) the number of factors is determined by one of the four information criteria proposed
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by Bai and Ng (2002) as defined as

IC1 � logrSprqs � r
n� T

nT
log

�
nT

n� T



IC2 � logrSprqs � r

n� T

nT
logC2

nT

IC3 � logrSprqs � r
logC2

nT

C2
nT

IC4 � logrSprqs � r
pn� T � kq logpnT q

nT
.

where Sprq � 1
nT
}R� pΛr

pF r}22 and CnT :�a
minpn, T q.

Tables 1 and 2 report the results of the empirical size of test for different significance levels. We

consider the case of φ � 0 in Table 1 and φ � 0.5 in Table 2. The tables present the results when

the factors are known in panel (a), the factors are unknown but the number of factors is known in

panel (b), or the number of factors are estimated either by the information criterion IC1 in panel

(c) or the eigenvalue ratio procedure in panel (d). Table ?? in the Supplementary Material shows

the results of the test when the number of factors are determined by IC2 � IC4.

A number of facts emerge from the inspection of the results in the Table 1. First, size distortions

are small when the factors are known. In this case, the test is undersized when the pair pn, T q is

small. When the factor are not known but the true number of factors is available, the size distortions

are high only when T � 100 and n � 50 due to inaccurate estimation of factors. However, the

distortions disappear when the pair pT, nq grows. In this case, the empirical size is similar to the

situation reported in Panel (a). The finite performance of test in the case where the number of

factors is selected by information criterion IC1 is almost indistinguishable to the case reported in

Panel (b). However, the results with the eigenvalue ratio procedure are much worse when T � 100

and n � 50. In this case, the procedure selects less factors than true number r � 3. For instance,

the procedure selects 2 or less factors in 36% of the replications. Just as comparison, for T � 100

and n � 50, IC1 underdetermines the number of factors only in 3.10% of the cases. For all the

other combinations of T and n all the data-driven methods selects the correct number of factors in

almost all replications.

When the idiosyncratic components are autocorrelated the size distortions are higher, as reported

in Table 2. This is mainly caused by the well-known difficulties in the estimation of the long-run

covariance matrix.

Tables 3–4 report the results of the empirical power. For evaluate power properties we set
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β12 � 0.8, β13 � 0.9, β14 � �0.7, and β15 � �0.5 in the DGP. When the factors are known, the

test always rejects the null and the empirical power is one for any significance level. On the other

hand, when factors must be estimated but the number of factors are known, the power decreases

as depicted in panel (b) in the tables. Nevertheless for T � 500, 700 the power is reasonably

high, specially when test is conducted at a 10% significance level. For T � 100, the performance

deteriorates as n grows. The results are similar when data-driven procedures are used to determine

the number of factors. Finally, the conclusions are mostly the same whenever φ � 0 or φ � 0.5.

The main message of the simulation exercise is that the finite-sample performance of the proposed

tests depend on the correct selection of factors. Nevertheless, for the DGP considered here, the usual

data-driven methods available in the literature to determine the true number of factors seem to work

reasonably well.

5.2 Informational Gains

The goal of this simulation is to compare, in a prediction environment, the three-stage method

developed in the paper by evaluating the information gains in predicting Y1t by three different

methods. First, the predictions are computed from a LASSO regression of Y1t on all the other n� 1

variables. This is the Sparse Regression (SR) approach. Second, we consider a principal component

regression (PCR), i.e., an ordinary least squares (OLS) regression of the variable of interest on

factors computed from the pool of other variables. Finally, we consider predictions constructed

from the method proposed here, the FarmPredict methodology. Table 5 presents the results. The

table presents the average mean squared error (MSE) over 5-fold cross-validation (CV) subsamples.

As in the size and power simulations, we consider different combinations of T and n. We report

results for the case where θ12 � 0.8, θ13 � 0.9, θ14 � �0.7, and θ15 � �0.5 in the DGP.

According to the DGP, the theoretical MSE is 0.25 when all the information is used. When just

a factor is used, the MSE is 2.21. From the table is clear that there are significant informational

gains when we consider both factors and the cross-dependence between idiosyncratic components.

Several conclusions emerge from the table. First, it is clear that when the sample size increases

the MSE reduces. This is expected. Second, the PCR’s MSE is close to the theoretical value when

the sample increases. The performance of the FarmPredict is quite remarkable when T � 500 or

T � 700 and is always superior to Sparse Regression.
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6 Applications

In this section we consider two applications with actual data to illustrate the benefits of the method-

ology developed in the paper. The first application deals with factor structure of asset returns,

whereas the second one is about macroeconomic forecasting in data-rich environments.

6.1 Factor Models Network Structure in Asset Returns

6.1.1 The Dataset

We illustrate the methodology developed in this paper by studying the factor structure of asset

returns. We consider monthly close-to-close excess returns from a cross-section of 9,456 firms traded

in the New York Stock Exchange. The data starts on November 1991 and runs until December

2018. There are 326 monthly observations in total. In addition to the returns we also consider 16

monthly factors: Market (MKT), Small-minus-Big (SMB), High-minus-Low (HML), Conservative-

minus-Aggressive (CMA), Robust-minus-Weak (RMW), earning/price ratio, cash-flow/price ratio,

dividend/price ratio, accruals, market beta, net share issues, daily variance, daily idiosyncratic

variance, 1-month momentum, and 36-month momentum. The firms are grouped according to

20 industry sectors as in Moskowitz and Grinblatt (1999). The following sectors are considered:8

Mining (602), Food (208), Apparel (161), Paper (81), Chemical (513), Petroleum (48), Construction

(68), Primary Metals (133), Fabricated Metals (186), Machinery (710), Electrical Equipment (782),

Transportation Equipment (166), Manufacturing (690), Railroads (25), Other transportation (157),

Utilities (411), Department Stores (67), Retail (1018), Financial (3419), and Other (11).

6.1.2 Results

We start the analysis by looking at the correlation matrix of a sample of nine different sectors,

namely: Mining, Food, Petroleum, Construction, Manufacturing, Utilities, Department Stores,

Retail, and Financial. Figure 1 plots the correlations that are larger than 0.15 in absolute value.

We also test for the null of diagonal covariance matrix. The null hypothesis is strongly rejected

with p-value much lower than 1%. To conduct the test of the covariance matrix we use the simple

sample estimator as described in the paper. However, the correlations plotted in Figure 1 and in

the subsequent ones are based on the nonlinear shrinkage estimator proposed by Ledoit and Wolf

(2020).

8The number between parenthesis indicate the number of firms in our sample that belong to each sector.
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We proceed by regressing the daily returns on the observed 16 factors. These three factors

explain most of the variation of the returns. Figure 2 shows the empirical distribution of the OLS

estimates of factor loadings over the 9,456 regressions. Figure 3 presents the estimated correlations

for the first-stage residuals. We focus on the nine sectors as before. The first-stage regression as

efficient in removing the correlation within specific sectors in some cases. The most notable ones

are Financial and Retail, followed by Construction, Petroleum, and Manufacturing. Nevertheless,

the tests for diagonal covariance matrix reject the null even in these specific cases.

The second step is to conduct a principal component analysis on the residuals of the first-stage.

The eigenvalue ratio procedure selects two factors, while all four information criteria points to a

single factor. We proceed with two factors. Note that, by construction, the principal component

factors are orthogonal to all the 16 risk factors considered in the first stage. Figure 4 shows the

estimated correlations for the residuals of the second-stage. The latent factor are not able to

reduce the correlations within each sector. However, when we consider the partial correlations the

conclusions are much different. As can be seen from Figure 5 that the partial correlation matrices

are (almost) diagonal. In addition, we are not able to reject the null of a diagonal covariance matrix

at a 5% significance level.

Finally, in order to shed some light on the links among different sectors, we report how often

that variables from sector i are selected in the third-stage LASSO regression for firms in sector

j. The numbers are normalized by the total number of firms in each sector and are presented in

Figure 6. The most interesting fact is that covariates from the financial sector are the ones most

frequently selected for all the other sectors. This may indicate that there is a “financial factor” that

was unmodeled in the first two stages.

The results presented here can be useful in applications where forecasting future returns is

the goal, for instance. The results indicate that the inclusion of the returns of firms belonging

to the financial sector may improve the performance of forecasting models. For example, if we

run a regression of the residuals of the first-stage regression of firms that do not belong to the

financial sector on the first principal component computed with the first-stage residuals only from

the financial sector, we find a statistically significant coefficient in 28% of the cases.
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6.2 Macroeconomic Forecasting

The second application consists of forecasting of a large set of monthly macroeconomic variables.

We compare four different models: (1) Autoregressive model; (2) Sparse LASSO Regression (SR);

(3) Principal Component Regression (PCR); and (4) a method based on the results in this paper

(farmPredict).

6.2.1 The Dataset

Our data consist of variables from the FRED-MD database, which is a large monthly macroeconomic

dataset designed for empirical analysis in data-rich macroeconomic environments. The dataset

is updated in real time through the FRED database and is available from Michael McCraken’s

webpage.9 For further details, we refer to McCracken and Ng (2016).

We use the vintage as of October 2020. Our sample extends from January 1960 to December

2019 (719 monthly observations), and only variables with all observations in the sample period are

used (119 variables). The dataset is divided into eight groups: (i) output and income; (ii) labor

market; (iii) housing; (iv) consumption, orders and inventories; (v) money and credit; (vi) interest

and exchange rates; (vii) prices; and (viii) stock market. Finally, all series are transformed in order

to become approximately stationarity as in McCracken and Ng (2016).

6.2.2 Setup and Methodology

In order to highlight the gains of exploring all relevant information in the the dataset, we construct

one-step forecasts for each one of the 119 variables in the dataset according to the following models:

1. Autoregressive model (AR):

pY pARq
i,t�1|t � pφi0 � pφi1pYi,t � . . .� pφippYi,t�p�1, i � 1, . . . , n,

where pφi0, pφi1, . . . , pφip, i � 1, . . . , n, are OLS estimates. This model will be also the first-stage

model in our methodology.

2. AR + Sparse regression (SR):

pY pSRq
i,t�1|t � pY pARq

i,t�1|t � pRi,t�1|t,

9https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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where pRi,t�1|t � pβ0i � pβ11i pRt � . . .� pβ1pi pRt�p�1, i � 1, . . . , n,

pβ0i, pβ1i . . . ,
pβpi, i � 1, . . . , n, are LASSO estimates, pRt �

� pR1,t, . . . , pRn,t

	
, and finally pRi,t �

Yi,t� pY pARq
i,t|t�1, i � 1, . . . , n. The parameters are estimated equation-wise for each one of the 119

variables in the dataset. The penalty parameter is selected by BIC as discussed in Section 4.

3. AR + Principal Component Regression (PCR):

pY pPCRq
i,t�1|t � pY pARq

i,t�1|t � pλ1i pF t,

where pF t is the estimate of the pk � 1q vector of factors F t given by principal component

analysis of pRt, the residuals of the first-stage regression. The parameter λi is computed by

OLS regression of pRi,t on pF t in the in-sample window.

4. AR + Full Information (FarmPredict):

pY pFarmPredictq
i,t�1|t � pY pPCRq

i,t�1|t � pUi,t�1|t

where pUi,t�1|t � pθ0i � pθ11i pU t � . . .� pθ1pi pU t�p�1,

pU t �
�pU1,t, . . . , pUn,t	1 and pUi,t � Yi,t � pY pPCRq

i,t|t�1, i � 1, . . . , n. The estimates pθ0i, pθ1i . . . , pθpi,
i � 1, . . . , n, are given by LASSO.

The forecasts are based on a rolling-window framework of fixed length of 480 observations,

starting in January 1960. Therefore, the forecasts start on January 1990. The last forecasts are

for December 2019. Note that the AR model only considers information concerning the own past of

the variable of interest. SR and PCR expand the information by two opposing routes. While SR uses

a sparse combination of the set of variables, PCR considers only a factor structure (dense model).

FarmPredict combines these two approaches and uses the full information available.

6.2.3 Brief In-Sample Analysis

We start by looking at the full sample in order to analyse the structure of dependence among the

many series considered. We first estimate an autoregressive model of order 4, AR(p), for each
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transformed series. Figure 7 reports the empirical distribution of the OLS estimators of the AR

coefficients. Figure 8 shows the distribution of the absolute value of the sum of the estimates. This

gives an idea of the persistence of each series. Although we report here the results for AR models

of pre-specified order equal to four, in the Supplementary Material we present results for optimal

lag selection via the BIC. Only one series has estimated persistence above one. This is the case for

NONBORRES: Reserves of Depositary Institutions, which belongs to group (v): Money and Credit.

The reason for such high persistence if due to a major structural break present in the second half

of the series. However, 82.35% of the series have estimated persistence below 0.9.10

We continue by estimating the number of factors when the full sample is used for PCA. We

consider two different situations. In the first, we do not include any lag in the basket of variables

used to compute the factors. In the second approach, we include four lags of each variable as well.

The eigenvalue ratio procedure selects either two (no lags) or a single factor (with lags). The four

information criteria of Bai and Ng (2002) as described in Section 5, estimate respectively for the

case with no lags (with lags) the following number of factors: six (one), five (one), nine (one), and

one (one). Note that the factors are estimated for the residuals of the first-step AR filter. If we

remove the NONBORRES variable from the sample the results to not change for the eigenvalue

ratio procedure. On the other hand, the new numbers of factors selected by the information criteria

are as follows: seven (one), six (one), eleven (one), and one (one).

Finally, we apply the testing approach developed in this paper to check for remaining (partial)

covariance structure in the data. The tests strongly reject the null of a diagonal matrix when applied

to the residuals either of the first or the second stages of the methodology. This serves as evidence

that FarmPredict may be a useful modeling approach for this macroeconomic dataset.

6.2.4 Forecasting Results

For each of the four models described above, we report a number of performance metrics in Table 6.

The table presents the frequency each model has the best performance among the four alternatives.

Numbers between parentheses indicates the frequency each model is the second, third, and fourth

best. We report the results for each one of the eight sectors as well as for the set of all 119 variables.

We show the results for two methods to determine the number of factors. Panel (a) reports the

results for the eigenvalue ratio method while Panel (d) presents the results for the information

criterion IC4. Criteria IC1, IC2, and IC3 select a very large number of factors and we relegate them

10Conventional unit-root tests also reject the null of unit-root for all but one of the series.
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to the supplementary material. Panels (c) and (d) in the table show the results for the cases where

the number of factors are kept fixed (r � 1 or r � 2).

FarmPredict is the model which is ranked first more frequently when all the series are considered.

It is also the best model for the following groups: output and income, labor market, housing, and

consumption, orders and inventories. The AR model is best for the following groups: money and

credit and stock market. The sparse regression is superior also for two groups: interest and exchange

rates and prices.

7 Conclusions

In this paper we propose a new methodology which bridges the gap between sparse regressions and

factor models and evaluate the gains of increasing the information set via factor augmentation.

Our proposal consists in several steps. In the first one, we filter the data for known factors (trends,

seasonal adjustments, covariates). In the second step, we estimate a latent factor structure. Finally,

in the last part of the procedure we estimate a sparse regression for the idiosyncratic components.

Furthermore, we also propose a new test for remaining structure in both high-dimensional covariance

and partial covariance matrices. Our test can be used to evaluate the benefits of adding more

structure in the model. Our paper has also a number of important side results. First, we proved

consistency of kernel estimation of long-run covariance matrices in high-dimensions where both

the number of observations and variables grows. Second, we derive the theoretical properties of

factor estimation on the residuals of a first step process. Third, the proposed test can be used as a

diagnostic tool for factor models.

We evaluate our methodology with both simulations and real data. The simulations show the

test has good size and power properties even when the true number of factors is unknown and must

be determined from the data. However, if the number of factors is underestimated, we observe

size distortions. This is specially the case when the eigenvalue ratio test is used to determine the

number of latent factors. The simulations also show that there are major informational gains when

combining factor models and sparse regressions in a forecasting exercise. Two applications are

considered in the paper.
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A Proof of the Theorems

Throughout the proofs we use the equivalence

}X}ψp   8 ðñ Pp|X| ¡ xq � Opψ�1
p pxqq as xÑ 8,

for any random variable X and ψp P Ψ, combined with Lemma 6 in Carvalho et al. (2018) and

Lemma 1 in Masini and Medeiros (2019). The key ingredients of the lemmas are a Marcinkiewicz-

Zygmund type inequality for strong mixing sequences to deal with the polynomial tails (Rio, 1994;

Doukhan and Louhichi, 1999) and a Bernstein inequality under strong mixing conditions to control

exponential tails (Merlevède et al. (2009) - Theorem 2).

A.1 Proof of Theorem 1

We first upper bound } pRit �Rit}ψ. By subsequent application of Hölder’s inequality we have

.| pRit �Rit| � |ppγi � γiq1W it|

¤ }pγi � γi}1}W it}8
� }pΣ�1

i pvi}1}W it}8
¤ k2}pΣ�1

i }max}pvi}8}W it}8,

where pΣi :�W 1
iW i{T and pvi :�W 1

iU i{T . Then by the Cauchy-Schwartz conjugate

} pRit �Rit}ψp{4 ¤ k2}}pΣ�1

i }max}ψp}}pvi}8}ψp{2}}W it}8}ψp .

The first term is bounded by Assumption 3(b). For the second term we have: }Wit`Uit}ψp{2 ¤
}Wit`}ψp}Uit}ψp ¤ C2 by Assumption 3(a). Then, tWit`Uitut¡0 is a zero-mean strong mixing with

exponential decay sequence (Assumption 3(c)) with bounded ψp{2-norm. Therefore, }}pvi}8}ψp{2 �
Op1{?T q uniformly in i ¤ n. Finally, the last term is bounded by the maximal inequality (van der

Vaart and Wellner (1996) - Lemma 2.2.2) and Assumption 3(a). The first result follows.
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A.2 Proof of Theorem 2

The proof is an adaption of the proof of Theorem 4 and Corollary 1 in Fan et al. (2013), henceforth

FLM, to include the estimation error in the sample covariance matrix. For part (a), we pick up

from expression (A.1) in Bai (2003) to obtain the following identity

pf t �HF t �
�
V

n


�1
�

1

T

Ţ

s�1

pf sEpU 1
sU tq
n

� 1

T

Ţ

s�1

pf srζst � 1

T

Ţ

s�1

pf srηst � 1

T

Ţ

s�1

pf srξst
�
, (A.1)

where rζst, rηst and rξst are defined before Lemma B.3.

By Assumptions 2(d) and 3(a) and the maximal inequality we have }R}max ¤ r}Λ}max}F }max �
}U}max � OP pψ�1pnT qq. Applying Lemma B.14 we conclude that }pΣ � rΣ}max � OP pωpψ�1pnT q �
ωqq � OP p1q, where the last assumption by the Theorem assumption. Finally ψ�1pn2q{?T � Op1q
also by assumption then }V

n
}�1 � OP p1q by Lemma B.6. Using the results (a)-(d) of Lemma B.5

we can bound in probability each of the terms in brackets of (A.1) in `2 norm uniformly in t ¤ T

and obtain the result (a).

For part (b) we use the fact that pΛ :� pRpF {T and the normalization pF 1 pF � Ir to write

pλi �Hλi � 1

T

Ţ

t�1

HF t
rUit � 1

T

Ţ

t�1

pRitppF t �HF tq �H
�

1

T

Ţ

t�1

F tF
1
t � Ir

�
λi. (A.2)

The first term can be upper bounded in `2 norm uniformly in i ¤ n by

?
r}H}max

i¤n
max
j¤r

����� 1T
Ţ

t�1

Fjt rUit
����� � OP p1qOP rψ�1

p{2pnq{
?
T � ωs,

where the equality follows from Lemma B.6(b) and (e). The `2 norm of the second term is upper

bounded uniformly in i ¤ n by

�
max
i¤n

1

T

Ţ

t�1

pR2
it

1

T

Ţ

t�1

}pF t �HF t}2
�1{2

�
�
OP p1qOP p 1

T
� p1{?n� ωq2q

�1{2
,

where the first term after the equality follows from Lemma B.6(d) together with the Theorem

assumption and the second term from Lemma B.4(e). Finally the last term of (A.2) is upper

bounded by

}H}}max
i¤n

λi}} 1

T

Ţ

t�1

F tF
1
t � Ir} � OP p1qOp1qOP p1{

?
T q,
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where the last term is OP p1{
?
T q by the maximum inequality and Assumption 3 Plug the last three

displays back into (A.2) yields result (b).

For part (c) we use we have } pU �U}max � }ΛF 1� pΛpF 1� pR�R}max ¤ }pΛpF 1�ΛF 1}max�}pR�
R}max. The last term is OP pωq by assumption. For the first term we use the decomposition

pλ1i pF t � λ1iF t � ppλi �Hλiq1ppF t �HF tq � pHλiq1ppF t �HF tq

� ppλi �Hλiq1HF t � λ1ipH 1H � IrqF t. (A.3)

Therefore, we can upper bound the left hand side as

|pλ1i pF t � λ1iF t| ¤ }pλi �Hλi}}pF t �HF t} � }Hλi}}pF t �HF t}

� }pλi �Hλi}}HF t} � }λi}}F t}}H 1H � Ir}.

Now we bound in probability each of the four term above uniformly in i ¤ n and t ¤ T . The first

one is given by part (a) and (b). maxi¤n }Hλi} ¤ }H}maxi¤n ||λi} ¤ OP p1qr}Λ}max � OP p1q by

Lemma B.6(b) and Assumption 2(d), thus the second term is bounded by part (a). Similarly for

the third term maxt¤T }HF t} ¤ }H}maxt¤T ||F t} � OP p1qOP pψ�1pT qq � OP pψ�1pT qq by Lemma

B.6(b) and Assumption 2(a). Finally }H 1H�Ir} � OP p1{
?
T �1{?n�ωq by Lemma B.6(c) hence

the last term is OP rψ�1pT qp1{?T � 1{?n� ωqs by Assumptions 2(d) and 3(a).

A.3 Proof of Theorem 3

We have that Lppθξq � ξ}pθξ}1 ¤ Lpθq � ξ}θ}1 for all θ P Rn by definition of pθξ, where Lpθq :�
}puy � θ1 pUx}22{T . Also, since Lpθq is a quadratic function, it implies that ppθξ � θq1∇2Lpθqppθξ �
θq ¤ �∇Lpθq1ppθξ � θq � ξp}θ}1 � }pθξ}1q. By Holder’s inequality we have |∇Lpθq1ppθξ � θq| ¤
}∇Lpθq}8}pθξ � θ}1 and by assumption ξ ¥ 2}∇Lpθq}8 then we have

ppθξ � θq1∇2Lpθqppθξ � θq ¤ ξ{2}pθξ � θ}1 � ξp}θ}1 � }pθξ}1q. (A.4)

For any index set S P rns, by the decomposability of the `1 norm (refer to Definition 1 in Negahban

et al. (2012)) followed by the triangle inequality we have } pθξ}1 � }pθξ,S}1�}pθξ,Sc}1 ¥ }θS}1�}pθξ.S�
θS}1�}pθξ,Sc}1 and }pθξ�θ}1 � }pθξ,S�θS}1�}pθξ,Sc�θSc}1 ¤ }pθξ,S�θS}1�}pθξ,Sc�θSc}1. Plugging
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it back in (A.4) yields

2ppθξ � θq1∇2Lpθqppθξ � θq � ξ}pθξ,Sc � θSc}1 ¤ 3ξ}pθξ,S � θS}1 � 4ξ}θSc}1. (A.5)

We then conclude that any minimizer pθξ of (3.6) and θ P Rn obeys pθξ � θ P CpS,θq :�
tx P Rn : }xSc}1 ¤ 3}xS}1 � 4}θSc}1u. If we take θ � θ0 and S � S0 :� ti : θ0,i � 0u thenpθξ � θ0 P C0 :� CpS0,θ0q. Note that C0 is a cone in Rn that does not depend on θ0 as }θ0,Sc0} � 0.

Moreover by definition of the compatibility constant κ :� κp pUx
pUx{T,S0, 3q we have that }pθξ,S �

θS}1 ¤ ppθξ�θq1∇2Lpθqppθξ�θqa|S0|{κ. Apply this inequality (A.5) and use the fact , 4ab   a2�4b2

for non-negative a, b P R to obtain

ppθξ � θq1∇2Lpθqppθξ � θq � ξ}pθξ � θ}1 ¤ 4ξ2|S0|{κ. (A.6)

Finally, we have by assumption } pU �U}max ¤ C1, }U}max ¤ C2 and C1p2C2 �C1q ¤ κ0
32|S| which, in

turn fulfills the assumptions of Lemma B.14 with ζ � 3 and α � 1{2. Therefore, we conclude that

κ ¥ κ0{2 and we have the result.

A.4 Proof of Theorem 4

We use in this proof the following additional notation for short: For every random vector X, we

denote by ΣX its covariance matrix, dX the diagonal of ΣX and σ2
X :� }dX}8. Also, XG denotes

zero-mean Gaussian random vector defined in the same probability space, independent of X and

with the same covariance matrix of X. Finally, for every pair of random vectors X,Y of the same

dimension and scalar s ¡ 0 define

ρpX,Y q :� sup
tPR

|Pp}X}8 ¤ tq � Pp}Y }8 ¤ tq|

∆pX, sq :� sup
tPR

Ppt ¤ }X}8 ¤ t� sq

Combining equations (83)–(86) in Giessing and Fan (2020) gives us the following basic inequality

|PpS ¤ c�pτqq � τ | ¤ ρprQ, rQGq � inf
δ1¡0

"a
δ1
log n

ωmax
� Pp}pΥ�Υ}max ¡ δ1q

*
� inf

δ2¡0

"
δ2

?
log n

ωmax
� Pp}Q� rQ}8 ¡ δ2q

*
(A.7)
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where rQ is defined below.

We start by Bounding the first term to the right-hand side of (A.7). Here we adapt the classical

”big block-small block” technique proposed by Bernstein in the context of proving CLT under

mixing conditions, which was also used in the proof of Theorem E.1 in Chernozhukov et al. (2018).

Consider two sequences of non-negative integers a :� aT and b :� bT such that b   a, a � b ¤ T ,

minta, bu Ñ 8, a � opT q and b � opaq as T Ñ 8. Let m :� rT {pa�bqs and define for j P t1, . . . ,mu
consecutive blocks of size a and b with index set Aj :� tppj � 1qpa� bq � 1, . . . , pj � 1qpa� bq � au
and Bj :� tpj � 1qpa� bq � a� 1, . . . jpa� bqu. Finally set C :� tmpa� bq � 1 . . . , T u, which might

be empty.

Aj :� 1?
a

¸
tPAj

rDt Bj � 1?
b

¸
tPBj

rDt; ; C � 1a|C|
¸
tPC

rDt,

such that

rQ :� 1?
T

Ţ

t�1

rDt �
c
ma

T

�
1?
m

m̧

j�1

Aj

�
looooooomooooooon

�:V

�
c
mb

T

�
1?
m

m̧

j�1

Bj

�
loooooooomoooooooon

�:L

�
c
T �mpa� bq

T
C

Now let rV :� 1?
m

°m
j�1

rAj where trAt, 1 ¤ t ¤ mu is an independent sequence such that At andrAt have the same distribution for all 1 ¤ t ¤ m. Similarly define rL :� 1?
m

°m
j�1

rBj. Lemma B.7

give us for any scalar s ¡ 0

ρprQ, rQGq ¤ ρp rV , rV Gq � ρp
c
ma

T
rV G, rQGq �∆p

c
ma

T
rV G, sq

� Pp
c
mb

T
}rL}8 ¡ sq � ρpV , rV q � ρpL, rLq. (A.8)

Notice that we any measurable A � R2 we have |PrpA1,A2q P As � PrrA1, rA2, s| ¤ αb where

tαn, n P Nu denote the α-mixing coefficient of the sequence p rDtq which is the same of the sequence

pU tq. Then the last two terms in (A.8) can be upper bounded by pm�1qαb and pm�1qαa respectively

by induction. Since αn is non-increasing in n and a ¥ b we have that

ρpV , rV q � ρpL, rLq ¤ 2pm� 1qαb ¤ 2T expp�2cbq. (A.9)

where we use Assumption 3(c) to obtain the last inequality.

For the fourth term we have by the maximal inequality followed by Markov’s inequality Pp
b

mb
T
}rL}8 ¡
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sq ¤
�
ψ

�
s
?
T

Cψψ
�1
p{2

pnq?mb


��1

and the anti-concentration inequality for Gaussian random vectors (The-

orem 7 in Giessing and Fan (2020) with p � 8) ∆pama
T
rV G, sq À Ts

?
logn

maσ
�V

. Set s � Cψψ
�1
p{2

pnq?mb?
T

ψ�1
p{2pT γq

for some γ ¡ 0 then

∆p
c
ma

T
rV G, sq � Pp

c
mb

T
}rL}8 ¡ sq À T

ma

c
mb

T

?
log nψ�1

p{2pnqψ�1
p{2pT γq

σ
rV

� 1

T γ
(A.10)

For the second term we have from Rio (2013) that, for every ε ¡ 0,

|rM `sij| � |Covp rDit, rDj,t�`q| ¤ 2α
ε{p2�εq
` } rDit}2�ε} rDjt�`}2�ε.

Hence, from Assumption 3 we have that }M `}max À expp�2c ε
2�ε`q and

}ma
T

Σ
rV G
�Σ

rQG
}max ¤ p1� ma

T
q}Σ

rV }max � }Σ
rQ �Σ

rV }max

¤ p b

a� b
� a

T
q}Σ

rV }max � 1

a

¸
|`| a

|`|}M `}max �
¸

a¤|`| T
}M `}max

À b

a
� a

T
� 1

a
� T expp�2c

ε

2� ε
aq,

where we use the fact that Σ
rV G

� Σ
rV � Σ

rAj
� ΣAj

� °
|`| ap1 � |`|{aqM `, Σ

rQG
� Σ

rQ �°
|`| T p1�|`|{T qM `,

°
|`| a |`|}M `}max ¤ c for some c   8 and

°
a¤|`| T }M `}max À T expp�2c ε

2�εaq.
Finally, we can bound the second term using Theorem 8 in Giessing and Fan (2020). In particular

for p � 8 it implies that

ρp
c
ma

T
rV G, rQGq À

log n
b
}ma
T

Σ
rV G
�Σ

rQG
}maxa

ma
T
σ
rV _ σ

rQ

À

b
T
ma

log n
b

b
a
� a

T
� 1

a
� T expp� 2cε

2�εaq
σ
rV _ σ

rQ

(A.11)

For the first term we have that } rDit}ψp{2 is uniformly (upper) bounded by Assumption 3(a)

then so is } rAit}ψp{2 � }Ait}ψp{2 � } 1?
a

°
sPAt

rDis}ψp{2 . Also pEpmaxi | rAit|q3q1{3 À }maxi | rAit|}ψp{2 À
ψ�1
p{2pnqmaxi } rAit}ψp{2 À ψ�1

p{2pnq. Since t rAt, 1 ¤ t ¤ mu is an iid sequence of random vector Theorem

5 in Giessing and Fan (2020) gives us

ρp rV , rV Gq À
plog nq7{6ψ�1

p{2pnq
T 1{6σ

rV

. (A.12)

By the triangle inequality we have that σ2
rV
¥ σ2

rQ
� }d

rQ � d
rV }max ¥ c � }Σ

rQ � Σ
rV }max Á
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c � 1
a
� T expp�2c ε

2�εaq. By setting a � r?T s we conclude that σ2
rV

is eventually bounded away

for zero for large enough T . If we further set b � rlog T {cs and γ � 1{4 and apply (A.9)-(A.12) to

bound the right-hand size of (A.7) we obtain

ρprQ, rQGq � O

�plog nq7{6ψ�1
p{2pnq

T 1{6 �
?
log T log nψ�1

p{2pnqψ�1
p{2pT 1{4q

T 1{4

�
. (A.13)

Finally, we now bound the last two term appering in (A.7). Let γ1 and γ2 be positive sequences

depending on n and T such that }pΥ�Υ}max � OP pγ1q and }Q� rQ}8 � OP pγ2q. Suppose we can

state conditions under which

log3 npγ1 _ γ2q � op1q T, nÑ 8 (A.14)

Then we have the the last two terms vanish in probability if we set δ1 � γ1 log n and δ2 � γ2 log n in

(A.7). Lemma B.8 and Lemma B.10 give us expressions for γ1 and γ2, respectively, which combined

with the rate assumptions in the theorem implies (A.14).

B Additional Lemmas

Lemma B.1. Let aj and bj denote the j-th eigenvalue in decreasing order of Σ and ΛΛ1 respectively.

Then, under Assumption 2(b) and pcq:

(a) bj � n for 1 ¤ j ¤ r

(b) maxj¤n |aj � bj| � Op1q

(c) aj � n for 1 ¤ j ¤ r.

Proof. Result paq follows from the fact that the r eigenvalues of Λ1Λ are also (the only r non-zero)

eigenvalues of ΛΛ1 and Assumption 2(b). Part pbq follows from Weyl’s inequality that implies

maxj¤n |aj� bj| ¤ }Σ�ΛΛ1} � Op1q, where the last equality follows from Assumption 2(c). Finally

result pcq follows from part paq and pbq and the (reverse) triangle inequality.

Recall that Σ be the pn� nq covariance matrix of U t � Zt�ΓW t. Let rΣ :� 1
T

°T
t�1U tU

1
t andpΣ the same as rΣ but with Γ replaced by the estimator pΓ. Also let paj denote the j-th eigenvalue in

decreasing order of pΣ
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Lemma B.2. Let ω1 be a non-negative sequence of n and T such that }pΣ� rΣ}max � OP pω1q. Then,

under the Assumptions 2 and 3:

(a) }pΣ�Σ}max � OP rω1 � ψ�1
p{2pn2q{?T s

(b) maxj¤n |paj � aj| � OP rnpω1 � ψ�1
p{2pn2q{?T qs

(c) paj �P n for j ¤ r provided that ω1 � ψ�1
p{2pn2qq{?T � OP p1q

Proof. Part (a) follows by triangle inequality followed by the maximum inequality since }pΣ�Σ}max ¤
}pΣ � rΣ}max � }rΣ �Σ}max � OP pω1q � OP pψ�1

p{2pn2q{?T q. Part (b) follows from Weyl’s inequality,

the fact that }pΣ � Σ} ¤ n}pΣ � Σ}max and part paq. Part pcq follows from the triangle inequality

combined with part pbq and Lemma B.1(c).

The Lemmas B.3-B.6 below are an adaption of Lemmas 8-10 in Fan et al. (2013), henceforth

FLM, to include the estimation error in the sample covariance matrix. To avoid confusion and make

it easier for the read to follow through the changes we use the same notation adopted in FLM. In

particular, if δit denotes the pi, tq element of ∆ :� pR�R then rUit � Uit� δit for i P rns and t P rT s.
Also, we consider that }∆}max � OP pωq for some non-negative sequence ω depending on n and T .

Define:

rζst :�
rU 1
s
rU t

n
� EpU 1

sU tq
n

�
�
U 1
sU t

n
� EpU 1

sU tq
n



�
�
U 1
sδt
n

� δ
1
sU t

n
� δ

1
sδt
n



�: ζst � ζ�st

rηst :� f 1s
°n
i�1 λi

rUit
n

� f 1s
°n
i�1 λiUit
n

� f
1
s

°n
i�1 λiδit
n

�: ηst � η�st

rξst :� F 1
t

°n
i�1 λi

rUis
n

� F 1
t

°n
i�1 λiUis
n

� F
1
t

°n
i�1 λiδis
n

� ξst � ξ�st.

Lemma B.3. Under Assumption 3:

(a) ζst � OP p1{
?
nq

(b) ηst � OP p1{
?
nq

(c) ξst � OP p1{
?
nq

(d) ζ�st � OP pω � ω2q and maxs,t¤T ζ�st � OP pψ�1pnT qω � ω2q

(e) η�st � OP pωq

(f) ξ�st � OP pωq.
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Proof. Parts paq, pbq and pcq are straightforward. For (d) we have that 1
n
U 1
sU t � OP p1q and 1

n
δ1sδt ¤

}∆}2max � OP pω2q then the other two terms in parentheses in the definition of ζ�st are OP pωq by the

Cauchy-Schwartz inequality. Part peq and pfq follows by similar arguments.

max
t¤T

1

T

Ţ

s�1

p 1

n
δ1sU tq2 � max

t¤T
1

n2
U 1
t

�
1

T

Ţ

s�1

δsδ
1
s

�
U t ¤ }∆}2maxpmax

t¤T
}U t}1{nq2

ζ�st ¤ }U s}8}δt}8 � }U t}8}δs}8 � }δt}8}δs}8 ¤ 2}U}max}∆}max � }∆}2max

Lemma B.4. Under Assumption 3:

(a) 1
T

°T
t�1r 1

nT

°T
s�1

pfjsEpU 1
sU tqs2 � OP p1{T q

(b) 1
T

°T
t�1r 1

T

°T
s�1

pfjsrζsts2 � OP rp1{
?
n� ω � ω2q2s

(c) 1
T

°T
t�1r 1

T

°T
s�1

pfjsrηsts2 � OP rp1{
?
n� ωq2s

(d) 1
T

°T
t�1r 1

T

°T
s�1

pfjsξsts2 � OP rp1{
?
n� ωq2s

(e) 1
T

°T
t�1 }pf t �Hf t}2 � OP r1{T � p1{?n� ω � ω2q2s

Proof. Part (a) is unaltered by the presence of a pre-estimation so it follows directly from Lemma

8(a) in FLM. For part (b), we have that for s, l P rns and j P rrs by Cauchy-Schwartz inequality

1

T

Ţ

t�1

r 1

T

Ţ

s�1

pfjsrζsts2 ¤
�� 1

T 2

Ţ

s,l�1

�
1

T

Ţ

t�1

rζstrζlt�2
��1{2

Since rζst � ζst � ζ�st � OP p1{
?
n� ω � ω2q by Lemma B.3, the term in parentheses is OP rp1{

?
n�

ω� ω2q2q. The result pbq then follows. For (c), by the triangle inequality and Lemma 8(c) in FLM,

we have that }°n
i�1 λjiruit} ¤ }°n

i�1 λjiUit} � }°n
i�1 λjiδit} � OP p

?
nq �OP pnωq, then we conclude

1

T

Ţ

t�1

r 1

T

Ţ

s�1

pf srηsts2 ¤ 1

Tn2

Ţ

t�1

}
ņ

i�1

U itλi}2 � OP p1{n� ω{?n� ω2q.

The proof of part (d) is analogous to part (c) therefore is omitted. For (e), let rpf t �Hf tsj denote

the j-th entry of the vector pf t �Hf t. Since V {n is bounded away for zero by Lemma B.2(c), the

fact that pa�b�c�dq2 ¤ 4pa2�b2�c2�d2q and using (A.1) we have that maxj¤r T�1
°
trpf t�Hf tsj

40



is upper bounded by some constant C   8 times

��max
j¤r

1

T

Ţ

t�1

�
1

T

Ţ

s�1

pfjsEpU 1
sU tq
n

�2

�max
j¤r

1

T

Ţ

t�1

�
1

T

Ţ

s�1

pfjsrζst�2

�max
j¤r

1

T

Ţ

t�1

�
1

T

Ţ

s�1

pfjsrηst�2

�max
j¤r

1

T

Ţ

t�1

�
1

T

Ţ

s�1

pfjsrξst�2
�� .

The result then follows by applying the bounds from part (a)-(d) to each of the four terms above.

Lemma B.5. Under Assumption 2:

(a) maxt¤T } 1
nT

°T
s�1

pf sEpU 1
sU tq} � OP p1{

?
T q

(b) maxt¤T } 1
T

°T
s�1

pf srζst} � OP p
b
ψ�1
p{2pT q{n� ψ�1pnT qω � ω2q

(c) maxt¤T } 1
T

°T
s�1

pf srηst} � OP pψ�1pT q{?n� ωq

(d) maxt¤T } 1
T

°T
s�1

pf sξst} � OP pψ�1pT qp1{?n� ωqq

Proof. Once again, part (a) is unaltered by the presence of a pre-estimation so it follows directly

from Lemma 9(a) in FLM. For part (b), from the Cauchy-Schwartz inequality we have

max
t¤T

} 1

T

Ţ

s�1

pf srζst} ¤
�

1

T

Ţ

s�1

}pf s}2 max
t¤T

1

T

Ţ

s�1

rζ2
st

�1{2

.

The first summation inside the parentheses equal r due to the normalization. For the second summa-

tion, by the triangle inequality, we have maxt¤T 1
T

°T
s�1

rζ2
st ¤ maxt¤T 1

T

°T
s�1 ζ

2
st�2maxt¤T 1

T

°T
s�1 ζstζ

�
st�

maxt¤T 1
T

°T
s�1 ζ

�
st

2. For the first term, the maximum inequality followed by Assumption 2(e) yields

max
t¤T

1

T

Ţ

s�1

ζ2
st � OP

�
ψ�1
p{2pT qmax

s,t
}ζ2}ψp{2

�
� OP

�
ψ�1
p{2pT qmax

s,t
}ζ}2ψ

�
� OP

�
ψ�1
p{2pT q
n

�
.

The last one is OP rpψ�1pnT qw � ω2q2q by Lemma B.3(d). Then by Cauchy Schwartz we have that

maxt¤T 1
T

°T
s�1

rζ2
st � OP rp

b
ψ�1
p{2pT q{n� ψ�1pnT qw � ω2q2s and result (b) follows.

For (c), by the triangle inequality we have that maxt¤T } 1
n

°n
i�1 λi

rUit} ¤ maxt¤T } 1
n

°n
i�1 λiUit}�

maxt¤T } 1
n

°n
i�1 λiδit}. For the first term, the maximum inequality followed by Assumption 2(f)

yields

max
t¤T

} 1

n
Λ1U t} � OP

�
ψ�1pT q?

n
max
t
} 1?

n
Λ1U t}

�
� OP pψ�1pT q{?nq.
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the second term is upper bounded by r}Λ}max}∆}max � OP pωq by Assumption 2(d). We then obtain

the result since

max
t¤T

} 1

T

Ţ

s�1

pf srηst} ¤ } 1

T

Ţ

s�1

pf sf 1s}max
t¤T

} 1

n

ņ

i�1

λi rUit} � OP

�
ψ�1pT q?

n
� ω



. (B.1)

By the triangle inequality, } 1
nT

°
s

°
i λi

rUispf s} ¤ } 1
nT

°
s

°
i λiUis

pf s} � } 1
nT

°
s

°
i λiδis

pfis}. Lemma

9(d) of FLM shows that the first term is OP p1{
?
nq. For the second term for each j P rrs:

} 1

nT

¸
s

¸
i

λiδis pfjs}2 ¤ �
1

T

ņ

s�1

} 1

n

ņ

i�1

λiδis}2 pfjs�� 1

T

ņ

s�1

pf 2
js

�
� OP pω2q.

Thus } 1
nT

°
s

°
i λi

rUitpf s} � OP p1{
?
n� ωq and by Cauchy-Schwartz inequality we have

max
t¤T

} 1

T

Ţ

s�1

pf sξst} ¤ max
t¤T

}F t}} 1

nT

¸
s

¸
i

λi rUitpf s} � OP pψ�1pT qp1{?n� ωqq. (B.2)

Lemma B.6. Let ω1 � ψ�1pn2qq{?T � Op1q where ω1 is defined in Lemma B.2, then Under

Assumption 3 we have

(a) }V �1} � OP p1{nq

(b) }H} � OP p1q

(c) }H 1H � Ir}F � OP p1{
?
T � 1{?n� ωq

(d) maxi¤n 1
T

°T
t�1

pR2
it � OP pwpψ�1pnT q � ωq � ψ�1

p{2pnq{
?
T � 1q

(e) maxi¤nmaxj¤r 1
T

°T
t�1 Fjt

rUit � OP pψ�1
p{2pnq{

?
T � ωq

Proof. We have that V �1 � diag p1{pa1, . . . , 1{parq and 1{paj �P 1{n for j ¤ r by Lemma B.2(c).

The result (a) then follows. The normalization tell us }pF } � ?
T , Lemma 11(a) in FLM give us

}F } � OP p
?
T q, }Λ1Λ} � ra1 � n by Lemma B.1(a) and from part (b) we have }V �1} � OP p1{nq.

Result (b) then follows since by definition H :� T�1V �1 pF 1
FΛ1Λ. For (c) we have by the triangle

inequality

}H 1H � Ir}F ¤ }H 1H �H 1F 1F {TH}F � }H 1F 1F {TH � Ir}F
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For the first term we have

}H 1pIr � F 1F {T qH}F ¤ }H}2}Ir � F 1F {T }F � OP p1qOP p1{
?
T q.

The second term is equal to

}H 1F 1F {TH � pF 1 pF {T }F
For (d) we have

max
i¤n

1

T

Ţ

t�1

pR2
it ¤ max

i¤n
1

T

Ţ

t�1

p pR2
it �R2

itq �max
i¤n

1

T

Ţ

t�1

R2
it � EpR2

itq �max
i¤n

1

T

Ţ

t�1

EpR2
itq

¤ max
i,t

| pR2
it �R2

it| �max
i¤n

1

T

Ţ

t�1

R2
it � EpR2

itq �max
i,t

EpR2
itq.

The last term is Op1q by Assumption 3(a), the middle term OP pψ�1
p{2pnq{

?
T q. The first term is no

larger then }∆}maxp2}R}max � }∆}maxq � OP pωpψ�1pnT q � ωqq. The result (d) then follows.

For (e) we have for each j ¤ r:

|T�1
¸
t

Fjt rUit| ¤ |T�1
¸
t

FjtUit| � |T�1
¸
t

Fjtδit|

¤ |T�1
¸
t

FjtUit| � pT�1
¸
t

F 2
jtT

�1
¸
t

δ2
itq1{2

The first term is OP pψ�1
p{2pnq{

?
T by the maximum inequality and Assumption 3 and the second is

OP pωq.

Lemma B.7. For every s ¡ 0:

ρppS, Zq ¤ ρpprT , rZq �∆pp
c
mq

n
rZ, sq � ρpp

c
mq

n
rZ,Zq � Pp

c
mr

n
}rU}p ¡ sq � ρppT, rT q � ρppU, rUq.

Proof. We start by showing that for every pair of random variables X and Y defined in the same

probability space taking values in the normed space pS, } � }q and pair of non-negative reals t, s, we

have

Pp}X} ¤ t� sq � Pp}Y } ¡ sq ¤ Pp}X � Y } ¤ tq ¤ Pp}X} ¤ t� sq � Pp}Y } ¡ sq. (B.3)

Indeed, for the right hand side inequality we use }X � Y } � }X � p�Y q} ¥ }X} � }Y }. Hence, for
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any t, s ¡ 0:

Pp}X � Y } ¤ tq ¤ Pp}X} ¤ t� }Y }q

¤ Pp}X} ¤ t� }Y }, }Y } ¤ sq � Pp}Y } ¡ sq

¤ Pp}X} ¤ t� sq � Pp}Y } ¡ sq.

For the other side we use }X � Y } ¤ }X} � }Y } to write

Pp}X � Y } ¤ tq ¥ Pp}X} ¤ t� }Y }q

¥ Pp}X} ¤ t� }Y }q � Pp}Y } ¡ sq � Pp}Y } ¡ sq

Now replace X and Y by
a

mq
n
T and

a
mr
n
U in (B.3), respectively and set } � } � } � }p. The right

hand side of the resulting expression can be upper bounded by Ppamq
n
}rT }p ¤ t�sq�Ppamr

n
}rU} ¡

sq � ρppT, rT q � ρppU, rUq, whereas the left hand side can be lower bounded by Ppamq
n
}rT } ¤ t� sq �

Ppamq
r
}rU} ¡ sq � ρppT, rT q � ρppU, rUq. Therefore

Pp
c
mq

n
}rT }p ¤ t� sq � Pp

c
mr

n
}rU}p ¡ sq � ρppT, rT q � ρppU, rUq

¤ Pp}S}p ¤ tq

¤ Pp
c
mq

n
}rT }p ¤ t� sq � Pp

c
mr

n
}rU}p ¡ sq � ρppT, rT q � ρppU, rUq.

Then for the right-hand side

Pp
c
mq

n
}rT }p ¤ t� sq ¤ Pp

c
mq

n
} rZ}p ¤ t� sq � ρpprT , rZq

¤ Pp
c
mq

n
} rZ}p ¤ tq �∆pp

c
mq

n
rZ, sq � ρpprT , rZq

¤ Pp}Z}p ¤ tq � ρpp
c
mq

n
rZ,Zq �∆pp

c
mq

n
rZ, sq � ρpprT , rZq

Similarly for the left-hand side and the proof is completed.

By the triangle inequality }pΥ � Υ}max ¤ }pΥ � rΥ}max � }rΥ � Υ}max where rΥ is the sample
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covariance matrix of rDt :� U1tU�1t. The second term is Opψ�1
p{4pn2q{?T q while for the first

}pΥ� rΥ}max ¤ }D � rD}maxp2} rD}max � }D � rD}maxq

The first term in parentheses is Opψ�1
� pnT qq and the second can be upper bounded by } pU �

U}maxp2}U}max � } pU � U}maxq which is show to be OP pηpn, T qψ�1pnT qq in the proof of Lemma

B.16. Therefore we conclude

}pΥ�Υ}max � OP

�
ηpn, T qψ�1pnT qψ�1

p{2pnT q � ψ�1
p{4pn2q{

?
T
	

To leverage on the results of Gaussian approximation, in particular on the work of Giessing and

Fan (2020) we would like to establish some sort of asymptotic linearity namely

QT �
1?
T

Ţ

t�1

Dt � 1?
T

Ţ

t�1

rDt �RT �: rQT �RT . (B.4)

such that }Rt}8 vanishes in probability at an appropriate rate as n, T Ñ 8. Then we can ap-

proximate the distribution of S � }Q}8 by the distribution of rS :� }rQ}p, which in turn can be

approximated by the distribution of S� :� }Q�}8 with high probability.

For some ε ¡ 0 we might set

δ1 � hrηpn, T qpψ�1pnT qq3 � ψ�1
p{4pn2q{

?
T s

δ2 � η1�εrψ�1pnq �
?
Tηs

Lemma B.8. }pΥ�Υ}max � OP

�
hrηpψ�1

p pnT qq3 � ψ�1
p{4pn4q{?T s

	

Proof. Let i :� pi1, i2, i3, i4q be a multi-index where i1, i2, i3, i4 P rns. Define for i and |`|   T :

rγ`i :� 1

T

Ţ

t�|`|�1

Ui1,tUi2,tUi3,t�|`|Ui4,t�|`|; γ`i :� Erγi,
and pγ`i as rγ`i with U ’s replaced by pU ’s. Also define

rυi :�
¸
|`| T

kp`{hqrγ`i υi :�
¸
|`| T

γ`i ,
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and pυi as rυi with U ’s replaced by pU ’s. Then we write

rυi � υi �
¸
|`| T

kp`{hqprγ`i � γ`iq �
¸
|`| T

pkp`{hq � 1qγ`i . (B.5)

Since }rγ`i � γ`i}ψp{4 � OpaT � |`|{T q � Op1{?T q, the ψp{4-Orlicz norm of the first term is bounded

by

h
¸
|`| T

|h�1kp`{hq|}rγ`i � γ`i}ψp{4 � O

�
h?
T

»
|kpuq|du



� Oph{

?
T q,

whereas the second term is deterministic and is shown to be Oph{?T q by Andrews (1991). Thus

}rυi � υi}ψp{4 � Oph{?T q uniformly in i P rns4. Thus, by the maximal inequality followed by

Markov’s inequality we conclude that

max
i
|rυi � υi| � OP pψ�1

p{4pn4qmax
i
}rυi � υi}ψp{4q � OP rψ�1

p{4pn4qh{
?
T s. (B.6)

We now use the fact that for any x,y P Rq we have |±q
i�1 xi�

±q
i�1 yi| � Op°q�1

i�0 }x�y}n�i8 }y}i8q
combined with the fact that } pU �U}max � op1q to obtain

max
i,`

|pγ`i � rγ`i | ¤ max
i,t,`

|pUi1,t pUi2,t pUi3,t�|`| pUi4,t�|`| � Ui1,tUi2,tUi3,t�|`|Ui4,t�|`||

� Op} pU �U}max}U}3maxq

� OP rηrψ�1
p pnT qs3s

Therefore we conclude

max
i
|pυi � rυi| ¤ max

i,`
|pγ`i � rγ`i | ¸

|`| T
|kp`{hq| � OP

�
hηrψ�1

p pnT qs3
»
|kpuq|du



� OP phηrψ�1

p pnT qs3q.

(B.7)

The result then follows from the triangle inequality }pΥ�Υ}max ¤ maxi |pυi� rυi| �maxi |rυi� υi|,
expression (B.10) and (B.11).

Lemma B.9. If }δit}ψp ¤ C   8 where δit :� pRit �Rit then

}}pV {nqpF t �HF tq}2}ψp � Op 1?
T
�
ψ�1
p{2pT q?
n

� ψ�1
p{2pT qCq.
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Proof. In this proof we use the fact that for any (possibly random) Ast, by Cauchy-Schwartz in-

equality and the normalization pF pF {T � Ir, we have } 1
T

°T
s�1

pF sAst} ¤
?
r
�

1
T

°T
s�1A

2
st

	1{2
. Thus

gpAstq :�
�����} 1

T

Ţ

s�1

pF sAst}
�����
ψ

� O

��������
�

1

T

Ţ

s�1

A2
st

�1{2������
ψ

�� .
(a) Set Ast � EpU 1

sU tq{n, then gpAstq � Op1{?T q.

(b) SetAst � rζst :� pU 1
sU t�EpU 1

sU tqq{n, then by maximal inequality gpAstq � Op}maxs¤T |rζst|}ψq �
Opψ�1pT qmaxs¤T }rζst}ψq. By the triangle inequality }rζst}ψ ¤ }ζst}ψ � }ζ�st}ψ. The first term is

Op1{?nq by Assumption 3(d). The second can be upper bounded by }U 1
sδt{n}ψ�}δ1sU t{n}ψ�

}δ1sδt{n}ψ � Op}Uis}ψp{2}δit}ψp{2q �Op}δit}2ψp{2q. Thus gpAstq � Opψ�1pT qp1{?n� C � C2qq.

(c) Set Ast � rηst :� F 1
s

°n
i�1 λipUit � δitq{n, then apply Cauchy-Schwartz twice to obtain

gpAstq � Op}p 1

T

Ţ

s�1

}F s}2q1{2}ψp{2}
ņ

i�1

λi
Uit � δit

n
}ψp{2q � Op1qOp}

ņ

i�1

λi
Uit
n
}ψp{2�}

ņ

i�1

λi
δit
n
}ψp{2q.

The first term in square brackets is Op1{?nq by Assumption 2(d) and 3(e); the second is

OpCq. Hence gpAstq � Op 1?
n
� Cq.

(d) Set Ast � rξst :� F 1
t

°n
i�1 λipUis � δisq{n, then apply Cauchy-Schwartz twice followed by the

maximal inequality to obtain

gpAstq � Op}}F t}}ψp{2}p
1

T

Ţ

s�1

}
ņ

i�1

λi
Uis � δis

n
}2q1{2}ψp{2qq

� Op1qOpψ�1pT qr}
ņ

i�1

λi
Uis
n
}ψp{2 � }p

ņ

i�1

λi
δis
n
}ψp{2sq.

The first term in square brackets is Op1{?nq by Assumption 2(d) and 3(e); the second is

OpCq. Hence gpAstq � Opψ�1
p{2pT qr 1?

n
� Csq.

Finally, use the identity (A.1), the triangle inequality twice and the bounds paq � pdq to obtain the

result.

Lemma B.10. If maxi,t }δit}ψ � OpCq and } pU �U}max � OP pηq then

���� 1?
T
p pU pU 1 �UU 1q

����
max

� OP

�?
Tη2 � r1?

T
� r2?

n
� r3C
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where

r1 :� ψ�1
p pnqψ�1

p{2pnqψ�1
p{2pn2q

r2 :� ψ�1
p pnqψ�1

p{4pT q � ψ�1
p{2pnq

r3 :� ψ�1
p pnqψ�1

p{4pT q � ψ�1
p pnT qψ�1

p{2pnq.

Proof. By the triangle inequality we have

���� 1?
T
p pU pU 1 �UU 1q

����
max

¤
���� 1?

T
p pU �Uqp pU �Uq1

����
max

� 2

���� 1?
T
Up pU �Uq1

����
max

.

For the first term we have

���� 1?
T
p pU �Uqp pU �Uq1

����
max

¤
?
T } pU �U}2max � OP p

?
Tη2q.

For the second term we use decomposition (A.3) to write

1?
T

Ţ

t�1

UitppUjt � Ujtq � 1?
T

Ţ

t�1

Uitppλ1j pF t � λ1jF t � pRjt �Rjtq

�
�
ppλj �Hλjq �Hλj�1 1?

T

Ţ

t�1

UitppF t �HF tq

�
�
ppλj �Hλjq � pH 1H � Irqλj

�1 1?
T

Ţ

t�1

UitF t � ppγj � γjq1 1?
T

Ţ

t�1

UitW jt

Apply Cauchy-Schwartz inequality in each term followed by the triangle inequality we obtain

���� 1?
T
Up pU �Uq1

����
max

¤
�
max
j¤n

}pλj �Hλj} � ?
r}H}}Λ}max

�
max
i¤n

����� 1?
T

Ţ

t�1

UitppF t �HF tq
�����

�
�
max
j¤n

}pλj �Hλj} � ?
r}H 1H � Ir}}Λ}max

�
max
i¤n

����� 1?
T

Ţ

t�1

UitF t

�����
�max

j¤n
}pγj � γj}max

i,j¤n

����� 1?
T

Ţ

t�1

UitW jt

����� .
The first term is OP p1qOP pψ�1pnqr 1?

T
� ψ�1

p{2
pT q?
n

� ψ�1
p{2pT qCsq due to Lemma B.6(a), Lemma B.9

and the maximal inequality; the second term is OP pψ
�1
p{2

pnq?
T

� 1?
n
� ψ�1pnT qCqOP pψ�1

p{2pnqq since,

by the maximal inequality, we might take ω � ψ�1pnT qC in Theorem 2(b). The last term is
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OP pψ�1pnqψ�1
p{2pnq{

?
T qOP pψ�1

p{2pn2qq. Thus,
��� 1?

T
Up pU �Uq1

���
max

� OP pr4q where

r4 :�
ψ�1
p pnqψ�1

p{2pnqψ�1
p{2pn2q?

T
�
ψ�1
p pnqψ�1

p{4pT q � ψ�1
p{2pnq?

n
� pψ�1

p pnqψ�1
p{4pT q � ψ�1

p pnT qψ�1
p{2pnqqC.

(B.8)

The result then follows.

Lemma B.11. Let } pU �U} � OP pηq then maxi,j,t |pVij,t � Vij,t| � OP ps0rη � ξψ�1pnqsq.

Proof. By the triangle inequality we have

|pVij,t � Vij,t| ¤ |pUi,t � Ui,t| � |pθ1i pU�ij,t � θ1iU�ij,t|.

Using Hölder’s inequality, the second term can be further bounded as

|pθ1i pU�ij,t � θ1iU�ij,t| ¤ |pθ1ip pU�ij,t �U�ij,tq| � |ppθi � θiq1U�ij,t|

¤ }pθi}1} pU�ij,t �U�ij,t}8 � }pθi � θi}1}U�ij,t}8
¤ p}θi}1 � }pθi � θi}1q} pU�ij,t �U�ij,t}8 � }pθi � θi}1}U�ij,t}8.

Combining the last two expressions with the fact that }θi}1 ¤ s0}θi}8 ¤ Cs0 and }pθ1 � θ1}1 �
OP pξs0q � OP p1q by Assumption 3(f) and the the maximum inequality yields the result

Lemma B.12. Let } pU �U} � OP pηq then

max
i,j

| 1?
T

Ţ

t�1

ppVij,tpVji,t � Vij,tVij,tq| � OP ts2
0rr4 � ξψ�1pnq �

?
T pη � ξψ�1pnqq2su

.

Proof. By the triangle inequality

max
i,j

| 1?
T
p pV 1

ij
pV ji � V 1

ijV jiq| ¤ max
i,j

| 1?
T
p pV ij � V ijqp pV ji � V jiq| � 2max

i,j
| 1?
T
V 1

ijp pV ij � V ijq|.

The first term can be bounded using Lemma B.11 since

max
i,j

| 1?
T
p pV ij � V ijqp pV ji � V jiq| ¤

?
T rmax

i,j,t
ppVijt � Vijtqs2 � OP p

?
T rs0pη � ξψ�1pnqqs2q.
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The second term can be upper bounded by

max
i,j

| 1?
T
V 1

ijp pU i �U iq| �max
i,j

}pθij}1 max
i,j

} 1?
T
V 1

ijp pU�ij �U�ijq}8

�max
i,j

}pθij � θij}1 max
i,j

| 1?
T
V 1

ijU�ij|.

Recall the rate r4 appearing in (B.8).Then the first term is OP ps0r4q, the second OP ps2
0r4q and the

last term is OP pξs2
0ψ

�1pnqq. Thus maxi,j | 1?
T
V 1

ijp pV ij � V ijq| � OP rs2
0pr4 � ξψ�1pnqqs. The result

then follows.

Lemma B.13. }pΥV �ΥV }max � OP

�
hrs0rη � ξψ�1

p pnqsps0ψ
�1
p pnT qq3 � s0

ψ�1
p{4

pn4q?
T

s



Proof. The proof is similar to the proof of Lemma B.8, refer to it for details. It suffices to bound in

probability } pV �V }max and }V }max, where V is pn2�T q matrix whose entries are Vij,t for i, j P rns
and t P rT s. Similar for pV with Vij,t replaced pVij,t. Lemma B.11 bounds the former, for the later

we have }V }max ¤ maxi,j }θij}1}U}max � Ops0ψ
�1pnT qq.

Let i :� pi1, i2, i3, i4q be a multi-index where i1, i2, i3, i4 P rns. Define for i and |`|   T :

rγ`i :� 1

T

Ţ

t�|`|�1

Ui1,tUi2,tUi3,t�|`|Ui4,t�|`|; γ`i :� Erγi,
and pγ`i as rγ`i with U ’s replaced by pU ’s. Also define

rυi :�
¸
|`| T

kp`{hqrγ`i υi :�
¸
|`| T

γ`i ,

and pυi as rυi with U ’s replaced by pU ’s. Then we write

rυi � υi �
¸
|`| T

kp`{hqprγ`i � γ`iq �
¸
|`| T

pkp`{hq � 1qγ`i . (B.9)

Since }rγ`i � γ`i}ψp{4 � OpaT � |`|{T q � Op1{?T q, the ψp{4-Orlicz norm of the first term is bounded

by

h
¸
|`| T

|h�1kp`{hq|}rγ`i � γ`i}ψp{4 � O

�
h?
T

»
|kpuq|du



� Oph{

?
T q,

whereas the second term is deterministic and is shown to be Oph{?T q by Andrews (1991). Thus

}rυi � υi}ψp{4 � Oph{?T q uniformly in i P rns4. Thus, by the maximal inequality followed by
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Markov’s inequality we conclude that

max
i
|rυi � υi| � OP pψ�1

p{4pn4qmax
i
}rυi � υi}ψp{4q � OP rψ�1

p{4pn4qh{
?
T s. (B.10)

We now use the fact that for any x,y P Rq we have |±q
i�1 xi�

±q
i�1 yi| � Op°q�1

i�0 }x�y}n�i8 }y}i8q
combined with the fact that } pU �U}max � op1q to obtain

max
i,`

|pγ`i � rγ`i | ¤ max
i,t,`

|pUi1,t pUi2,t pUi3,t�|`| pUi4,t�|`| � Ui1,tUi2,tUi3,t�|`|Ui4,t�|`||

� Op} pU �U}max}U}3maxq

� OP rηrψ�1pnT qs3s

Therefore we conclude

max
i
|pυi � rυi| ¤ max

i,`
|pγ`i � rγ`i | ¸

|`| T
|kp`{hq| � OP

�
hηrψ�1pnT qs3

»
|kpuq|du



� OP phηrψ�1pnT qs3q.

(B.11)

The result then follows from the triangle inequality }pΥ�Υ}max ¤ maxi |pυi� rυi| �maxi |rυi� υi|,
expression (B.10) and (B.11).

Lemma B.14. Let U ,V be T � n matrices such that }U � V }max ¤ C1 and }V }max ¤ C2, then

}ΣU �ΣV }max ¤ C3 :� C1p2C2 � C1q,

where ΣU :� U 1U{T and ΣV :� V 1V {T . Furthermore, if C3 ¤ ακpΣV ,S, 3q{p|S|p1 � ζq2q for

S � rns, ζ ¡ 0 and α P r0, 1s, then

p1� αqκpΣV ,S, ζq ¤ κpΣU ,S, ζq ¤ p1� αqκpΣV ,S, ζq

.

Proof. By the (reverse) triangle inequality we have }U}max�}V }max ¤ }U �V }max, from which we

conclude that }U}max ¤ }U�V }max�}V }max ¤ C1�C2. Now }ΣU�ΣV }max � max1¤i,j¤n |T�1
°T
t�1 UitUjt�
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VitVijt| ¤ maxi,j,t |UitUjt � VitVjt| and

|UitUjt � VitVjt| ¤ |pUit � VitqUjt � pUjt � VjtqVit| ¤

}U � V }maxp}U}max � }V }maxq ¤ C1p2C2 � C1q.

For the second part of the lemma notice that for any x P Rn we have |x1ΣUx � x1ΣV x| �
|x1pΣU � ΣV qx| ¤ }ΣU � ΣV }max}x}21 ¤ C3}x}21 by the first part. Also, if }xSc}1 ¤ ζ}xS}1 we

have that }x}1 � }xS}1 � |xSc}1 ¤ p1 � ζq}xS}1 ¤ p1 � ζqax1ΣV x|S|{κpΣV ,S, ζq where the

last inequality follows from the definition of compatibility condition. Thus |x1ΣUx � x1ΣV x| ¤
C3p1� ζq2x1ΣV x|S|{κpΣV ,S, ζq ¤ x1ΣV x{2, where the last inequality follows from the definition

of compatibility condition. Therefore, we have that p1 � αqx1ΣV x ¤ x1ΣUx ¤ p1 � αqx1ΣV x

whenever }xSc}1 ¤ ζ}xS}1. Take in infimum to conclude.

Lemma B.15. Let W :� pU ,V q and Z :� pX,Y q be T�pn�1q matrices such that }W �Z}max ¤
C1 and }Z}max ¤ C2, then for any δ P Rn we have

}U 1pV �Uδq{T �X 1pY �Xδq{T }8 ¤ p1� }δ}1qC1p2C2 � C1q

Proof. For convenience let q :� V �Uδ P RT and r :� Y �Xδ P RT , then Hölder’s inequality gives

us }r}8 ¤ p1 � }δ}1q}Z}max ¤ p1 � }δ}1qC2 and }q � r}8 ¤ p1 � }δ}1q}W � Z}max ¤ p1 � }δ}1qC1.

From the (reverse) triangle inequality we obtain }q}8 ¤ }q � r}8 � }r}8 ¤ p1 � }δ}1qpC1 � C2q.
Now, following the same steps in the proof of previous Lemma, we can upper bound the right hand

side of the display by }U �X}max}q}8 � }q � r}8}X}max, which in turn can be upper bounded by

the left hand size of the display.

Lemma B.16. Under the same conditions of Theorems 1 and 2

}∇Lpθ1q �∇L0pθ1q}8 � OP

�
ψ�1pT qψ�1pnT qψ�1pnqψ�1

p{2pnq
T 1{4 � ψ�1pT qT 1{4

?
n

�

}∇2Lpθq �∇2L0pθq}max � OP

�
ηpn, T q �ψ�1pnT q � ηpn, T q�� ψ�1

p{2pn2q?
T

�
,

where ∇L0pθq :� 2ErU�1tpU1t � θ1U�1tqs and ∇2L0pθq :� EU�1tU
1
�1t.
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Proof. By the triangle inequality we have

1

2
}∇Lpθq �∇L0pθq}8 � }p pUx �Ux �Uxq1V {T � EpU 1

xV {T q}8

¤ }U 1
xV {T � EpU 1

xV {T q}8 � } pUx �Ux}max}V }8.

Similarly, using Lemma 5.B

}∇2Lpθq �∇2L0pθq}max ¤ } pU 1
x
pUx{T �U 1

xUx{T }max � }U 1
xUx{T � EpU 1

xUx{T q}max

¤ } pUx �Ux}maxp2}Ux}max � } pUx �Ux}maxq

� }U 1
xUx{T � EpU 1

xUx{T q}max.

By Corollary 1 and Assumption 3 we can bound in probability each of those terms

}U 1
xV {T � EpU 1

xV {T q}8 � OP

�
ψ�1
p{2pnq?
T

�

} pUx �Ux}max � OP

�
ψ�1pnT qψ�1pnqψ�1

p{2pnq
T 1{4 � T 1{4

?
n

�
�: OP rηpn, T qs

}V }8 � ψ�1pT q

}Ux}max � OP rψ�1pnT qs

}U 1
xUx{T � EpU 1

xUx{T q}max � OP

�
ψ�1
p{2pn2q?
T

�
.

Therefore

}∇Lpθq �∇L0pθq}8 � OP

�
ψ�1
p{2pnq?
T

�
ψ�1pT qψ�1pnT qψ�1pnqψ�1

p{2pnq
T 1{4 � ψ�1pT qT 1{4

?
n

�

and

}∇2Lpθq �∇2L0pθq}max � OP

�
ηpn, T q �ψ�1pnT q � ηpn, T q�� ψ�1

p{2pn2q?
T

�

Lemma B.17. For p ¡ 0, let ψp : R� Ñ R� defined by ψppxq :� x1t0¤x tu � pexppxpq � 1q1tx ¥ tu
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where t :�
�

1�p
p

	1{p
. If }X}ψp   8 then there exist constants C1 ¡ 0 and C2 ¡ 0 such that

Pp|X| ¡ xq ¤ C1 expp�xp{C2q x ¡ 0.

In particular, if 0   }X}ψp   8 we might take C1 � 2�10   p   1 exppp1� pq{pq and C2 � }X}pψp.
Conversely, if there exist constants C1 ¡ 0 and C2 ¡ 0 such that Pp|X| ¡ xq ¤ C1 expp�xp{C2q for

x ¡ 0, then

}X}ψp ¤

$''&''%
rp2C1 � 1qC2s1{p _ 2C1C

1{p
2 p�1Γp1{pq ; 0   p   1

rpC1 � 1qC2s1{p ; p ¥ 1,

where Γp�q denotes the Gamma function.

Proof. If }X}ψp � 0 then X � 0 a.s and the inequality holds for any choice of C1, C2 ¡ 0. For

the case when 0   }X}ψp   8 we have by Markov inequality and the fact that x ÞÑ exp a|x|p is

non-decreasing for a ¡ 0

Pp|X| ¥ xq � Ppexppa|X|pq ¥ exppaxpqq ¤ expp�axpqE exppa|X|pq.

Also

E exppa|X|pq � E exppa|X|pq1a1{p|X|   t� E exppa|X|pq1a1{p|X| ¥ t

¤ exppp1� pq{pq10   p   1� Eψppa1{p|X|q � 1.

Set a � }X}�pψp to conclude that the middle term is less or equal to 1.

For the converse we have for a ¡ 0, by Fubini’s Theorem

E expp|aX|pq � 1 �
» » |x|p

0

ap exppapyqdyPpdxq

� ap
» 8

0

Pp|X| ¥ x1{pq exppapxqdx.

Since Pp|X| ¡ xq ¤ C1 expp�xp{C2q, for a   C
�1{p
2 , we have

E exprp|aX|qps � 1 ¤ apC1

» 8

0

exp
�
�xp 1

C2
� apq

�
dx ¤ apC1

C�1
2 �ap .
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Also

E|X| �
» 8

0

Pp|X| ¡ xqdx ¤ C1

» 8

0

expp�xp{C2qdx � C1

pC
�1{p
2

Γp1{pq.

Therefore using the last two displays we have, for 0   a   C
�1{p
2

Eψppa|X|q ¤ E|aX|10   p   1� E exprp|aX|qps � 1

¤ aC1

pC
�1{p
2

Γp1{pq10   p   1� apC1

C�1
2 �ap .

When p ¥ 1 the right hand side is less or equal than 1 for a ¤ rp1 � C1qC2s�1{p hence }X}ψp ¤
rp1 � C1qC2s1{p. For 0   p   1, the right hand side is less or equal than 1 for a ¤ tC�1{p

2 rp2C1 �
1q�1{p ^ 2C1p

�1Γp1{pqsu�1 then }X}ψp ¤ p2C1 � 1qC2s1{p _ 2C1C
1{p
2 p�1Γp1{pq.

Lemma B.18. For p ¡ 0, there is a constant Cp only depending on p such that

}XY }ψp{2 ¤ Cp
�}X}ψp _ }Y }ψp

�
,

where ψp defined as per Lemma (B.17).

Proof. If }X}ψp � 0 or }Y }ψp � 0 then XY � 0 a.s and the inequality hold trivially. Similarly if

}X}ψp � 8 or }Y }ψp � 8. So we assume that 0   }X}ψp   8 and 0   }Y }ψp   8 and from

Lemma (B.17) we have for x ¡ 0

Pp|X| ¡ xq ¤ Kp expr�px{}X}ψpqps

Pp|Y | ¡ xq ¤ Kp expr�px{}X}ψpqps,

where Kp :� 2� 10   p   1 exppp1� pq{pq. Then

Pp|XY | ¥ xq ¤ Pp|X| ¥ ?
xq � Pp|Y | ¥ ?

xq

¤ Kp expp�zp{2{}X}pψpq �Kp expp�zp{2{}Y }pψpq

¤ 2Kp expp�zp{2{Dp
pq

where Dp :� }X}ψp _ }Y }ψp . Apply once again Lemma (B.17) to conclude that }XY }ψp{2 ¤ CpDp
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where Cp � p2Kp � 1q1{p for p ¥ 1 otherwise p4Kp � 1q1{p _ 8KpΓp2{pqp�1.
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Table 1: Simulation Results: Size with φ � 0.

The table reports the empirical size of the test of remaining covariance structure. Panel (a) reports

the case where the factors are known, whereas Panel (b) considers that the factors are unknown but

the number of factors is known. Panels (c) and (d) present the results when the number of factors are

determined, respectively, by the eigenvalue ratio test and the information criterion IC1. Factors are

estimated by the usual principal component algorithm. Three nominal significance levels are considered:

0.01, 0.05, and 0.10. The table reports the results for the case where φ � 0 in (5.3).

Panel(a): Known factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.08 0.03 0.01 0.10 0.05 0.01 0.09 0.04 0.01
n � 1� T 0.06 0.02 0.00 0.07 0.03 0.01 0.10 0.05 0.01
n � 2� T 0.07 0.02 0.00 0.07 0.02 0.00 0.08 0.04 0.00
n � 3� T 0.05 0.01 0.00 0.08 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.23 0.13 0.02 0.14 0.06 0.02 0.11 0.05 0.01
n � 1� T 0.13 0.06 0.01 0.09 0.04 0.01 0.12 0.05 0.01
n � 2� T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n � 3� T 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01

Panel(c): Information criterion (IC1)

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.24 0.14 0.03 0.14 0.06 0.02 0.11 0.05 0.01
n � 1� T 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n � 2� T 0.10 0.05 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n � 3� T 0.07 0.03 0.01 0.08 0.04 0.01 0.07 0.03 0.01

Panel(d): Eigenvalue ratio

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.47 0.38 0.25 0.14 0.06 0.02 0.11 0.05 0.01
n � 1� T 0.14 0.07 0.02 0.09 0.04 0.01 0.12 0.05 0.01
n � 2� T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.04 0.00
n � 3� T 0.06 0.02 0.00 0.08 0.04 0.01 0.07 0.03 0.01
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Table 2: Simulation Results: Size with φ � 0.5.

The table reports the empirical size of the test of remaining covariance structure. Panel (a) reports

the case where the factors are known, whereas Panel (b) considers that the factors are unknown but

the number of factors is known. Panels (c) and (d) present the results when the number of factors are

determined, respectively, by the eigenvalue ratio test and the information criterion IC1. Factors are

estimated by the usual principal component algorithm. Three nominal significance levels are considered:

0.01, 0.05, and 0.10. The table reports the results for the case where φ � 0.5 in (5.3).

Panel(a): Known factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.09 0.03 0.01 0.11 0.06 0.01 0.10 0.05 0.01
n � 1� T 0.07 0.03 0.00 0.07 0.03 0.01 0.11 0.06 0.01
n � 2� T 0.08 0.02 0.00 0.08 0.03 0.00 0.09 0.05 0.00
n � 3� T 0.05 0.02 0.00 0.09 0.04 0.01 0.07 0.04 0.01

Panel(b): Known number of factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.24 0.14 0.02 0.15 0.07 0.02 0.12 0.06 0.01
n � 1� T 0.13 0.07 0.01 0.09 0.04 0.01 0.14 0.06 0.02
n � 2� T 0.09 0.04 0.01 0.08 0.04 0.01 0.09 0.05 0.00
n � 3� T 0.07 0.02 0.00 0.08 0.04 0.01 0.08 0.03 0.01

Panel(c): Information criterion (IC1)

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.49 0.42 0.29 0.15 0.07 0.02 0.11 0.06 0.01
n � 1� T 0.15 0.09 0.02 0.10 0.04 0.01 0.14 0.06 0.01
n � 2� T 0.09 0.04 0.01 0.09 0.04 0.01 0.09 0.05 0.00
n � 3� T 0.07 0.03 0.00 0.10 0.04 0.01 0.08 0.03 0.01

Panel(d): Eigenvalue ratio

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.25 0.14 0.04 0.14 0.07 0.02 0.13 0.06 0.01
n � 1� T 0.15 0.07 0.02 0.10 0.04 0.01 0.13 0.06 0.02
n � 2� T 0.11 0.05 0.01 0.08 0.05 0.01 0.10 0.05 0.00
n � 3� T 0.08 0.03 0.01 0.09 0.04 0.01 0.08 0.03 0.01

58



Table 3: Simulation Results: Power (φ � 0).

The table reports the empirical power of the test of remaining covariance structure. Panel (a) reports

the case where the factors are known, whereas Panel (b) considers that the factors are unknown but the

number of factors is known. Factors are estimated by the usual principal component algorithm. Three

nominal significance levels are considered: 0.01, 0.05, and 0.10.

Panel(a): Known factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 1 1 1 1 1 1 1 1 1
n � 1� T 1 1 1 1 1 1 1 1 1
n � 2� T 1 1 1 1 1 1 1 1 1
n � 3� T 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.33 0.18 0.03 0.99 0.97 0.83 0.99 0.99 0.94
n � 1� T 0.20 0.08 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n � 2� T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n � 3� T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34

Panel(c): Eigenvalue ratio

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.15 0.09 0.02 0.99 0.97 0.83 0.99 0.99 0.94
n � 1� T 0.19 0.07 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n � 2� T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n � 3� T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34

Panel(d): Information criterion (IC1)

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.15 0.09 0.02 0.99 0.97 0.83 0.99 0.99 0.94
n � 1� T 0.19 0.07 0.01 0.84 0.60 0.13 0.95 0.81 0.33
n � 2� T 0.16 0.07 0.01 0.83 0.55 0.11 0.94 0.82 0.34
n � 3� T 0.08 0.03 0.00 0.82 0.56 0.10 0.95 0.81 0.34
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Table 4: Simulation Results: Power (φ � 0.5).

The table reports the empirical power of the test of remaining covariance structure. Panel (a) reports

the case where the factors are known, whereas Panel (b) considers that the factors are unknown but the

number of factors is known. Factors are estimated by the usual principal component algorithm. Three

nominal significance levels are considered: 0.01, 0.05, and 0.10.

Panel(a): Known factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 1 1 1 1 1 1 1 1 1
n � 1� T 1 1 1 1 1 1 1 1 1
n � 2� T 1 1 1 1 1 1 1 1 1
n � 3� T 1 1 1 1 1 1 1 1 1

Panel(b): Known number of factors

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.36 0.18 0.03 1.00 1.00 0.91 1.00 1.00 1.00
n � 1� T 0.20 0.09 0.02 0.89 0.69 0.13 1.00 0.92 0.39
n � 2� T 0.18 0.07 0.01 0.98 0.59 0.13 1.00 0.96 0.36
n � 3� T 0.10 0.03 0.00 0.91 0.66 0.11 1.00 0.92 0.39

Panel(c): Eigenvalue ratio

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.15 0.11 0.03 1.00 1.00 0.96 1.00 1.00 1.00
n � 1� T 0.22 0.08 0.01 0.99 0.70 0.16 1.00 0.95 0.38
n � 2� T 0.17 0.07 0.01 0.94 0.62 0.12 0.98 0.88 0.37
n � 3� T 0.09 0.03 0.00 0.89 0.59 0.11 1.00 0.87 0.40

Panel(d): Information criterion (IC1)

T � 100 T � 500 T � 700
0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

n � 0.5� T 0.15 0.11 0.03 1.00 1.00 0.96 1.00 1.00 1.00
n � 1� T 0.22 0.08 0.01 0.99 0.70 0.16 1.00 0.95 0.38
n � 2� T 0.17 0.07 0.01 0.94 0.62 0.12 0.98 0.88 0.37
n � 3� T 0.09 0.03 0.00 0.89 0.59 0.11 1.00 0.87 0.40
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Table 5: Simulation Results: Informational Gains

The table reports the average mean squared error (MSE) of three different prediction models over 5-fold

cross-validation subsamples. The goal is to predict the first variable using information from the remaining

n � 1. Panel (a) considers the case of Sparse Regression (SR) where Y1t is LASSO-regressed on all the

other variables. Panel (b) shows the results of Principal Component Regression (PCR). Finally, Panel (c)

presents the results of FarmPredict. “N/A” means “not available”. Note that there is no factor selection

for Sparse Regression. “Known Number” means that the number of factors is known.
Panel(a): Sparse Regression (SR)

Known Number Eigenvalue Ratio Information Criterion (IC1)

T � 100 T � 500 T � 700 T � 100 T � 500 T � 700 T � 100 T � 500 T � 700
n � 0.5� T 0.57 0.35 0.34 N/A N/A N/A N/A N/A N/A
n � 1� T 0.40 0.36 0.32 N/A N/A N/A N/A N/A N/A
n � 2� T 0.39 0.33 0.31 N/A N/A N/A N/A N/A N/A
n � 3� T 0.35 0.32 0.30 N/A N/A N/A N/A N/A N/A

Panel(b): Principal Component Regression (PCR)

Known Number Eigenvalue Ratio Information Criterion (IC1)

T � 100 T � 500 T � 700 T � 100 T � 500 T � 700 T � 100 T � 500 T � 700
n � 0.5� T 3.82 3.12 3.01 4.69 3.12 3.01 3.26 3.04 2.34
n � 1� T 3.09 2.35 2.34 4.05 3.35 3.34 3.22 3.02 2.32
n � 2� T 3.14 2.97 2.21 4.13 3.97 2.21 3.29 3.21 2.27
n � 3� T 3.83 3.00 2.33 3.83 3.00 2.33 3.12 3.00 2.28

Panel(c): FarmPredict

Known Number Eigenvalue Ratio Information Criterion (IC1)

T � 100 T � 500 T � 700 T � 100 T � 500 T � 700 T � 100 T � 500 T � 700
n � 0.5� T 0.50 0.33 0.31 0.52 0.33 0.31 0.50 0.34 0.30
n � 1� T 0.32 0.29 0.28 0.37 0.29 0.28 0.53 0.28 0.27
n � 2� T 0.27 0.27 0.26 0.28 0.27 0.26 0.32 0.28 0.28
n � 3� T 0.22 0.21 0.21 0.22 0.21 0.21 0.34 0.27 0.27
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Table 6: Forecasting Results.

The table reports the frequency each model is ranked the first, second, third and fourth best model among the four

alternatives. Panel (a) considers the case when the factors are selected by the eigenvalue ratio procedure. Panel (b)

presents the results when factors are selected by the information criterion IC1. Panels (c) and (d) consider the cases

when the number of factors are pre-specified as either one or two. We present the results for each individual group

of variables as well as for the full set of macroeconomic variables.
Panel (a): Optimal Factor Selection (eigenvalue ratio)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.000 0.250 0.625 0.000 0.125 0.625 0.250 0.375 0.500 0.125 0.000 0.500 0.375 0.000 0.125
(ii) labor market 0.032 0.097 0.290 0.581 0.226 0.065 0.516 0.194 0.194 0.516 0.097 0.194 0.548 0.323 0.097 0.032
(iii) housing 0.100 0.100 0.300 0.500 0.400 0.400 0.100 0.100 0.000 0.200 0.400 0.400 0.500 0.300 0.200 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.000 0.000 0.667 0.333 0.333 0.667 0.000 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.429 0.357 0.143 0.071 0.214 0.214 0.357 0.214 0.214 0.286 0.357 0.143 0.143 0.143 0.143 0.571
(vi) interest and exchange rates 0.368 0.211 0.263 0.158 0.526 0.316 0.158 0.000 0.053 0.263 0.211 0.474 0.053 0.211 0.368 0.368
(vii) prices 0.150 0.150 0.600 0.100 0.650 0.100 0.200 0.050 0.050 0.200 0.100 0.650 0.150 0.550 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.000 0.667 0.333 0.000 1.000 0.000 0.000 0.333 0.000 0.333 0.333
(ix) all 0.185 0.134 0.311 0.370 0.311 0.160 0.378 0.151 0.160 0.387 0.168 0.286 0.345 0.319 0.143 0.193

Panel (b): Optimal Factor Selection (IC4)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.125 0.188 0.563 0.063 0.250 0.500 0.188 0.250 0.375 0.313 0.063 0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613 0.226 0.032 0.548 0.194 0.226 0.581 0.065 0.129 0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600 0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200 0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.167 0.000 0.500 0.333 0.167 0.667 0.167 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143 0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474 0.368 0.158 0.368 0.105 0.158 0.263 0.474 0.105 0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100 0.500 0.300 0.150 0.050 0.100 0.150 0.100 0.650 0.300 0.400 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.176 0.118 0.277 0.429 0.252 0.227 0.378 0.143 0.176 0.353 0.269 0.202 0.395 0.303 0.076 0.227

Panel (c): Fixed Number of Factors (r � 1)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.125 0.125 0.188 0.563 0.063 0.250 0.500 0.188 0.250 0.375 0.313 0.063 0.563 0.250 0.000 0.188
(ii) labor market 0.032 0.097 0.258 0.613 0.226 0.032 0.548 0.194 0.226 0.581 0.065 0.129 0.516 0.290 0.129 0.065
(iii) housing 0.000 0.000 0.400 0.600 0.200 0.500 0.100 0.200 0.200 0.100 0.500 0.200 0.600 0.400 0.000 0.000
(iv) consumption, orders and inventories 0.000 0.000 0.333 0.667 0.167 0.000 0.500 0.333 0.167 0.667 0.167 0.000 0.667 0.333 0.000 0.000
(v) money and credit 0.571 0.286 0.071 0.071 0.143 0.429 0.357 0.071 0.143 0.286 0.429 0.143 0.143 0.000 0.143 0.714
(vi) interest and exchange rates 0.316 0.105 0.105 0.474 0.368 0.158 0.368 0.105 0.158 0.263 0.474 0.105 0.158 0.474 0.053 0.316
(vii) prices 0.100 0.150 0.650 0.100 0.500 0.300 0.150 0.050 0.100 0.150 0.100 0.650 0.300 0.400 0.100 0.200
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.176 0.118 0.277 0.429 0.252 0.227 0.378 0.143 0.176 0.353 0.269 0.202 0.395 0.303 0.076 0.227

Panel (d): Fixed Number of Factors (r � 2)

AR SR PCR FarmPredict

Group 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
(i) output and income 0.063 0.125 0.250 0.563 0.063 0.063 0.625 0.250 0.250 0.625 0.063 0.063 0.625 0.188 0.063 0.125
(ii) labor market 0.065 0.129 0.226 0.581 0.226 0.097 0.516 0.161 0.226 0.452 0.097 0.226 0.484 0.323 0.161 0.032
(iii) housing 0.200 0.200 0.000 0.600 0.500 0.400 0.100 0.000 0.000 0.100 0.700 0.200 0.300 0.300 0.200 0.200
(iv) consumption, orders and inventories 0.167 0.167 0.167 0.500 0.167 0.167 0.500 0.167 0.333 0.333 0.333 0.000 0.333 0.333 0.000 0.333
(v) money and credit 0.500 0.357 0.071 0.071 0.214 0.357 0.143 0.286 0.143 0.286 0.429 0.143 0.143 0.000 0.357 0.500
(vi) interest and exchange rates 0.316 0.368 0.000 0.316 0.368 0.263 0.263 0.105 0.105 0.316 0.263 0.316 0.211 0.053 0.474 0.263
(vii) prices 0.100 0.100 0.100 0.700 0.500 0.150 0.250 0.100 0.200 0.150 0.550 0.100 0.200 0.600 0.100 0.100
(viii) stock market 0.667 0.000 0.000 0.333 0.000 0.667 0.333 0.000 0.000 0.333 0.667 0.000 0.333 0.000 0.000 0.667
(ix) all 0.193 0.193 0.126 0.487 0.286 0.202 0.361 0.151 0.176 0.345 0.311 0.168 0.345 0.261 0.202 0.193

62



Mining

200 400 600

200

400

600

Food

50 100 150 200

50

100

150

200

Petroleum

10 20 30 40

10

20

30

40

Construction

20 40 60

20

40

60

Manufacturing

200 400 600

200

400

600

Utilities

100 200 300 400

100

200

300

400

Dept. Stores

20 40 60

20

40

60

Retail

200 400 600 800 1000

200

400

600

800

1000

Financial

1000 2000 3000

1000

2000

3000

Figure 1: Correlations of returns larger than 0.15 in absolute value.
We estimate the correlations between all pairs of returns from a sample of nine specific sectors. The correlations

that are higher than 0.15 in absolute value are shown as black dots in the figure. We consider the following sectors:

mining, food, petroleum, construction, manufacturing, utilities, department stores, retail, and financial.
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Figure 2: First-stage coefficient estimates.
The figure shows the empirical distribution of the first-stage regression where each excess returns are linearly regressed

on 16 risk factors.
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Figure 3: Correlations of first-stage residuals larger than 0.15 in absolute value.
We estimate the correlations between all pairs of residuals from the first-stage OLS regression on 16 observed risk

factors from a sample of nine specific sectors. The correlations that are higher than 0.15 in absolute value are shown

as black dots in the figure. We consider the following sectors: mining, food, petroleum, construction, manufacturing,

utilities, department stores, retail, and financial.
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Figure 4: Correlations of second-stage residuals larger than 0.15 in absolute value.
We estimate the correlations between all pairs of residuals from the second-stage principal component analysis from

a sample of nine specific sectors. The correlations that are higher than 0.15 in absolute value are shown as black

dots in the figure. We consider the following sectors: mining, food, petroleum, construction, manufacturing, utilities,

department stores, retail, and financial.
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Figure 5: Partial correlations of second-stage residuals larger than 0.15 in absolute value.
We estimate the partial correlations between all pairs of residuals from the second-stage LASSO regression from a

sample of nine specific sectors. The correlations that are higher than 0.15 in absolute value are shown as black dots

in the figure. We consider the following sectors: mining, food, petroleum, construction, manufacturing, utilities,

department stores, retail, and financial.
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Figure 6: Variable Selection Frequency.
We report how often that variables from column sectors are selected in the third-stage LASSO regression for firms

on line sectors . The numbers are normalized by the total number of firms in each sector.
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Figure 7: AR coefficient estimates.
The figure illustrates the empirical distribution of the ordinary least squares (OLS) estimation of the coefficients of

an fourth-order autoregressive, AR(4), model across the 119 macroeconomic time series. Each panel relates to one

specific coefficient.
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Figure 8: Absolute sum of AR coefficient estimates.
The figure illustrates the empirical distribution of the absolute sum of the ordinary least squares (OLS) estimation

of the coefficients of an fourth-order autoregressive, AR(4), model across the 119 macroeconomic time series.
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Figure 9: Estimated number of factors.
The figure illustrates the number of selected factors over the estimation windows. The figure reports the results for

the eigenvalue ratio procedure and the four information criteria discussed in the paper.
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strong mixing conditions. In C. Houdré, V. Koltchinskii, D. Mason, and M. Peligrad (Eds.), High

Dimensional Probability V: The Luminy Volume, Volume Volume 5, pp. 273–292. Institute of

Mathematical Statistics.

Moon, R. and M. Weidner (2015). Linear regression for panel with unknown number of factors as

interactive fixed effects. Econometrica 83, 1543–1579.

Moskowitz, T. and M. Grinblatt (1999). Do industries explain momentum? Journal of Finance 54,

1249–1290.

76



Negahban, S., P. Ravikumar, M. Wainwright, and B. Yu (2012). A unified framework for high-

dimensional analysis of m-estimators with decomposable regularizers. Statistical Science 27,

538–557.

Onatski, A., M. Moreira, and M. Hallin (2013). Asymptotic power of sphericity tests for high-

dimensional data. Annals of Statistics 41, 1204–1231.
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